Skip to main content

Advertisement

Log in

The Computerization of Archaeology: Survey on Artificial Intelligence Techniques

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This paper analyses the application of artificial intelligence techniques to various areas of archaeology and more specifically: (1) the use of software tools as a creative stimulus for the organization of exhibitions; the use of humanoid robots and holographic displays as guides that interact and involve museum visitors; (2) the analysis of methods for the classification of fragments found in archaeological excavations and for the reconstruction of ceramics, with the recomposition of the parts of text missing from historical documents and epigraphs; (3) the cataloging and study of human remains to understand the social and historical context of belonging with the demonstration of the effectiveness of the AI techniques used; (4) the detection of particularly difficult terrestrial archaeological sites with the analysis of the architectures of the Artificial Neural Networks most suitable for solving the problems presented by the site; the design of a study for the exploration of marine archaeological sites, located at depths that cannot be reached by man, through the construction of a freely explorable 3D version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. https://caa-international.org/

  2. https://www.archcalc.cnr.it/.

  3. https://www.tensorflow.org/

  4. https://keras.io/

  5. https://inscriptions.packhum.org/

  6. https://www.dh.uni-leipzig.de/wo/projects/open-greek-and-latin-project/

  7. https://anthropology.si.edu/cm/terry.htm

  8. www.theatlasgis.com, MEDS property.

  9. https://www.tensorflow.org/

  10. https://cordis.europa.eu/project/id/034924

References

  1. “Archaeology: Wikipedia.” [Online]. https://en.wikipedia.org/wiki/Archaeology. Accessed 16 Apr 2020.

  2. INFORMATICA ARCHEOLOGICA in ‘Enciclopedia Italiana.’ [Online]. https://www.treccani.it/enciclopedia/informatica-archeologica_%28Enciclopedia-Italiana%29/. Accessed 16 Apr 2020.

  3. Kuno Y, Sadazuka K, Kawashima M, Yamazaki K, Yamazaki A, Kuzuoka H. Museum guide robot based on sociological interaction analysis. In: Conference on human factors in computing systems—proceedings;ACM. San Jose. 2007. p. 1191–4.

  4. Burgard W, et al. Experiences with an interactive museum tour-guide robot. Artif Intell. 1999;114(1–2):3–55. https://doi.org/10.1016/s0004-3702(99)00070-3.

    Article  MATH  Google Scholar 

  5. Kuno Y et al. Museum guide robot with communicative head motion. In: The 15th IEEE international symposium on robot and human interactive communication (RO-MAN06); IEEE. Hatfield, UK, 2006. p. 33–8.

  6. Amigoni F, Schiaffonati V, Somalvico M. Minerva: an artificial intelligent system for composition of museums, Milano. 2003.

  7. Politecnico FA, Milano D, Amigoni F, Schiaffonati V. The Minerva multiagent system for supporting creativity the minerva multiagent system for supporting creativity in museums organization, Milano. 2003.

  8. Amigoni F, Schiaffonati V. A New Version of Minerva for Organizing Archeological Museums, Milano. 2006.

  9. Caggianese G, De Pietro G, Esposito M, Gallo L, Minutolo A, Neroni P. Discovering Leonardo with artificial intelligence and holograms: a user study. Pattern Recognit Lett. 2020;131:361–7.

    Article  Google Scholar 

  10. Fukui K, Yamaguchi O. Facial feature point extraction method based on combination of shape extraction and pattern matching. Syst Comput Jpn. 1998;29(6):49–58. https://doi.org/10.1002/(SICI)1520-684X(19980615)29:6<49:AID-SCJ5>3.0.CO;2-L.

    Article  Google Scholar 

  11. Frontoni E. Vision based mobile robotics: mobile robot localization using vision sensors. Lulu Com. 2012.

  12. Fox D, Burgard W, Thrun S, Cremers AB. Position estimation for mobile robots in dynamic environments. In: Proceedings of the National Conference on Artificial Intelligence, 983–8, 1998.

  13. Moravec HP. Sensor fusion in certainty grids for mobile robots. Sens Devices Syst Robot. 1989;9(2):253–76. https://doi.org/10.1007/978-3-642-74567-6_19.

    Article  Google Scholar 

  14. Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots. Auton Robots. 1998;5(3–4):253–71. https://doi.org/10.1023/A:1008806205438.

    Article  MATH  Google Scholar 

  15. Fox D, Burgard W, Thrun S. The dynamic window approach to collision avoidance. Robot Autom Mag IEEE. 1997;4:23–33. https://doi.org/10.1109/100.580977.

    Article  Google Scholar 

  16. Thrun S, Arno B, Fr T. Map learning and high-speed navigation in RHINO. AI-based mobile robots: case studies of successful robot systems. Bonn: MIT Press; 1999. p. 1–24.

    Google Scholar 

  17. Thomas D, Mark B. An analysis of time-dependent planning. Proc Seventh Natl Conf Artif Intell AAAI. 1988;88:49–544.

    Google Scholar 

  18. Richard B. Dynamic Programming, Sixth prin. Princeton: Princeton University Press; 1957.

    Google Scholar 

  19. Howard RA. Dynamic programming and Markov processes. Oxford: Wiley; 1960.

    MATH  Google Scholar 

  20. Levesque HJ, Reiter R, Lespérance Y, Lin F, Scherl RB. Golog: a logic programming language for dynamic domains. J Log Program. 1997;31(1–3):59–83. https://doi.org/10.1016/S0743-1066(96)00121-5.

    Article  MathSciNet  MATH  Google Scholar 

  21. Friedman-Hill E. Jess, the java expert system shell. Biosystems. 2nd ed. 2003.

  22. Sprott JC. Physics demonstrations: a sourcebook for teachers of physics. Madison: University of Wisconsin Press; 2006.

    Google Scholar 

  23. Adams WY, Adams EW. Archaeological typology and practical reality: a dialectical approach to artifact classification and sorting. Cambridge: Cambridge University Press; 2008.

    Google Scholar 

  24. Barceló JA. Computational intelligence in archaeology. Comput Intell Archaeol. 2008;25(2003):1–418. https://doi.org/10.4018/978-1-59904-489-7.

    Article  Google Scholar 

  25. Salazar A, Safont G, Vergara L, Vidal E. Pattern recognition techniques for provenance classification of archaeological ceramics using ultrasounds. Pattern Recognit Lett. 2020;135:441–50. https://doi.org/10.1016/j.patrec.2020.04.013.

    Article  Google Scholar 

  26. Romanengo C, Biasotti S, Falcidieno B. Recognising decorations in archaeological finds through the analysis of characteristic curves on 3D models. Pattern Recognit Lett. 2020;131:405–12. https://doi.org/10.1016/j.patrec.2020.01.025.

    Article  Google Scholar 

  27. Gualandi ML, et al. ArchAIDE-archaeological automatic interpretation and documentation of cEramics. Eurogr Work Graph Cult Herit. 2016;2:4–8.

    Google Scholar 

  28. Gattiglia G. Classificare le ceramiche: dai metodi tradizionali all’intelligenza artificiale L’esperienza del progetto europeo ArchAIDE Archeol. Archeol Quo Vadis? Riflessioni Metodol sul Futur di una Discip Atti. 2018;1:271–98.

    Google Scholar 

  29. Anichini F, Gattiglia G. Big archaeological data. The ArchAIDE project approach. In: GARR-Conf17-proceedings-03 Big; Associazione consortium GARR, Pisa. 2018. p. 3.

  30. Ostertag C, Beurton-Aimar M. Matching ostraca fragments using a siamese neural network. Pattern Recognit Lett. 2020;131:336–40. https://doi.org/10.1016/j.patrec.2020.01.012.

    Article  Google Scholar 

  31. Lecun Y, Bottou L, Bengio Y, Ha P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;10(1109/5):726791.

    Google Scholar 

  32. Mayer-Schönberger V, Cukier K. Big data: a revolution that will transform how we live, work, and think. Boston: Houghton Mifflin Harcourt; 2013.

    Google Scholar 

  33. C. O’Neil, R. Schutt, Doing Data Science, 1st ed. O’Reilly, 2013.

  34. Smith R. An overview of the Tesseract OCR engine. In: Ninth international conference document analysis recognition (ICDAR 2007), vol. 2; 2007. pp 629–633. https://doi.org/10.1007/978-3-642-22027-2_57.

  35. Potenziani M, Callieri M, Dellepiane M, Corsini M, Scopigno R. 3DHOP: 3D heritage online presenter. Comput Graph. 2015. https://doi.org/10.1016/j.cag.2015.07.001.

    Article  Google Scholar 

  36. De Smet P. Reconstruction of ripped-up documents using fragment stack analysis procedures. Forensic Sci Int. 2008;176(2–3):124–36. https://doi.org/10.1016/j.forsciint.2007.07.013.

    Article  Google Scholar 

  37. Assael Y, Sommerschield T, Prag J. Restoring ancient text using deep learning: a case study on Greek epigraphy. 2019. https://doi.org/10.18653/v1/d19-1668.

  38. Smith DA, Rydberg-Cox JA, Crane G. The Perseus Project: a digital library for the humanities. Lit Linguist Comput. 2000. https://doi.org/10.1093/llc/15.1.15.

    Article  Google Scholar 

  39. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. Adv Neural Inf Process Syst. 2014;4(January):3104–12.

    Google Scholar 

  40. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.

    Article  Google Scholar 

  41. Luong M-T, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. In: Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (ACL), 17 Aug 2015; 2015. pp 1412–21.

    Google Scholar 

  42. “Studi Anatomici di Leonardo Da Vinci.” [Online]. https://www.leonardodavinci-italy.it/anatomia/anatomia-umana. Accessed 12 Mar 2020.

  43. Bewes J, Low A, Morphett A, Pate FD, Henneberg M. Artificial intelligence for sex determination of skeletal remains: application of a deep learning artificial neural network to human skulls. J Forensic Leg Med. 2019;62:40–3. https://doi.org/10.1016/j.jflm.2019.01.004.

    Article  Google Scholar 

  44. Szegedy C et al. Going deeper with convolutions. In: Proceedings of IEEE Computer Society Conference Computer Vision Pattern Recognition, Computer Vision Foundation, vol 07, 12-June; 2015. pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594.

  45. “Pretrained GoogLeNet convolutional neural network - MATLAB googlenet - MathWorks Italia.” [Online]. https://it.mathworks.com/help/deeplearning/ref/googlenet.html;jsessionid=6e2403278b76bcd1b70f7c832bb6. Accessed 24 Feb 2020.

  46. Thomas D. Methods of estimating height from parts of skeleton. Med Reconstr New York. 1884;46:293–6.

    Google Scholar 

  47. Pearson K. IV. Mathematical contributions to the theory of evolution.—V. On the reconstruction of the stature of prehistoric races. Philos Trans R Soc Ser. 1899;192:169–244.

    MATH  Google Scholar 

  48. Czibula G, Ionescu VS, Miholca DL, Mircea IG. Machine learning-based approaches for predicting stature from archaeological skeletal remains using long bone lengths. J Archaeol Sci. 2016;69:85–99. https://doi.org/10.1016/j.jas.2016.04.004.

    Article  Google Scholar 

  49. Feldman J, Rojas R. Neural networks: a systematic introduction. Berlin: Springer; 2013.

    Google Scholar 

  50. Mitchell M. An introduction to genetic algorithms. Cambridge: Bradford Books; 1998.

    Book  Google Scholar 

  51. Richard DGS, Duda O, Hart PE. Pattern Classification. 2nd ed. New York: Wiley; 2001.

    MATH  Google Scholar 

  52. Russell PNS. Artificial intelligence—a modern approach. Prentice Hall International Series in Artificial Intelligence. Upper Saddle River: Prentice Hall; 2003.

    Google Scholar 

  53. Mean absolute error: Wikipedia [Online]. https://en.wikipedia.org/wiki/Mean_absolute_error. Accessed 17 Feb 2020.

  54. Standard error: Wikipedia. [Online]. https://en.wikipedia.org/wiki/Standard_error#Estimate. Accessed 17 Feb 2020.

  55. Del Ser J, et al. Bio-inspired computation: where we stand and what’s next. Swarm Evol Comput. 2019;48(April):220–50. https://doi.org/10.1016/j.swevo.2019.04.008.

    Article  Google Scholar 

  56. Singh B, Sohal HS. Estimation of stature from clavicle in Punjabis; a preliminary report. Indian J Med Res. 1952;40(1):67–71.

    Google Scholar 

  57. Tibbetts GL. Estimation of stature from the vertebral column in American Blacks. J Forensic Sci. 1981;26(4):11427J. https://doi.org/10.1520/jfs11427j.

    Article  Google Scholar 

  58. Holland TD. Estimation of adult stature from fragmentary tibias. J Forensic Sci. 1992;37(5):13309J. https://doi.org/10.1520/jfs13309j.

    Article  Google Scholar 

  59. Kozak J. Stature reconstruction from long bones. The estimation of the usefulness of some selected methods for skeletal populations. Var Evol. 1996;5:83–94.

    Google Scholar 

  60. Chiba M, Terazawa K. Estimation of stature from somatometry of skull. Forensic Sci Int. 1998;97(2–3):87–92. https://doi.org/10.1016/S0379-0738(98)00145-5.

    Article  Google Scholar 

  61. Goldewijk GK, Jacobs J. The relation between stature and long bone length in the Roman Empire. 2013.

  62. Jasuja OP, Singh G. Estimation of stature from hand and phalange length. J Indian Acad Forensic Med. 2004;26:1–24.

    Google Scholar 

  63. Ryan I, Bidmos M. Skeletal height reconstruction from measurements of the skull in Indigenous South Africans. Forensic Sci Int. 2007;167:16–211. https://doi.org/10.1016/j.forsciint.2006.06.003.

    Article  Google Scholar 

  64. Raxter MH, Ruff CB, Azab A, Erfan M, Soliman M, El-Sawaf A. Stature estimation in ancient Egyptians: a new technique based on anatomical reconstruction of stature. Am J Phys Anthropol. 2008;136(2):147–55. https://doi.org/10.1002/ajpa.20790.

    Article  Google Scholar 

  65. Champa Pal D, Datta AK. Estimation of stature from radius length in living adult Bengali males. Indian J Basic Appl Med Res. 2014;3(2):380–9.

    Google Scholar 

  66. Raxter M, Auerbach B, Ruff C. Revision of the fully technique for estimating statures. Am J Phys Anthropol. 2006;130:374–84. https://doi.org/10.1002/ajpa.20361.

    Article  Google Scholar 

  67. Feldesman MR, Fountain RL. ‘Race’ specificity and the femur/stature ratio. Am J Phys Anthropol. 1996;100(2):207–24. https://doi.org/10.1002/(SICI)1096-8644(199606)100:2<207:AID-AJPA4>3.0.CO;2-U.

    Article  Google Scholar 

  68. Boni G. Il metodo negli scavi archeologici, vol. IV, serie, no. XCIV. Arbor Sapientiae, 1901.

  69. Ducke B, Brandenburg A. Archaeological predictive modelling in intelligent network structures. In: CAA The Digital Heritage of Archaeology. Proceedings of the 30th CAA conference held at Heraklion. In: Doerr M, Sarris A, editors. 2003 pp. 1–8.

  70. Caspari G, Crespo P. Convolutional neural networks for archaeological site detection—finding ‘princely’ tombs. J Archaeol Sci. 2019. https://doi.org/10.1016/j.jas.2019.104998.

    Article  Google Scholar 

  71. Verdonck L, Launaro A, Vermeulen F, Millett M. Ground-penetrating radar survey at Falerii Novi: a new approach to the study of Roman cities. Antiquity. 2020;94(375):705–23. https://doi.org/10.15184/aqy.2020.82.

    Article  Google Scholar 

  72. Righetti G, Serafini S, Rueda FB, Church W, Garnero G. Sotto Nuvole, sotto la Foresta: applicazioni Tecnologiche Lidar e di Intelligenza Artificiale per Nuove prospettive nel Sito monumentale di Kuelap-Perù. Archeomatica; In Michele Fasolo editors. 2020;1:6–13.

    Google Scholar 

  73. Chapman P et al. VENUS, Virtual ExploratioN of Underwater Sites. In: The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST; 2006. pp. 1–8.

  74. Jeansoulin R, Papini O. Underwater archaeological knowledge analysis and representation in the VENUS Project: a preliminary draft. In: XXI International CIPA Symposium; Greece. 2006. pp. 1–6.

  75. Baum EB. On the capabilities of multilayer perceptrons. J Complex. 1988;4(3):193–21515. https://doi.org/10.1016/0885-064X(88)90020-9.

    Article  MathSciNet  MATH  Google Scholar 

  76. Mackay DJC. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992;4:448–72.

    Article  Google Scholar 

  77. Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43(1):59–69. https://doi.org/10.1007/BF00337288.

    Article  MathSciNet  MATH  Google Scholar 

  78. Pascoal A, Silvestre C, Oliveira P. Vehicle and mission control of single and multiple autonomous marine robots. Adv Unmanned Mar Veh. 2005. https://doi.org/10.1049/PBCE069E_ch17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Mantovan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

In this article, there is no need for informed consent, because it is an overview of studies already carried out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantovan, L., Nanni, L. The Computerization of Archaeology: Survey on Artificial Intelligence Techniques. SN COMPUT. SCI. 1, 267 (2020). https://doi.org/10.1007/s42979-020-00286-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00286-w

Keywords