Skip to main content
Log in

Assessment of phytoremediation capacity of three halophytes: Suaeda monoica, Tamarix indica and Cressa critica

  • Original Paper
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Halophyte is a distinctive group of plants that can survive, even well flourish, at a concentration of Na+ and Cl ions along with heavy metals that would be lethal to most of the agricultural crop species. These capabilities make certain halophytes good contenders for phytoremediation through phytoextraction or phytostabilization of the salt and heavy metals (HMs) in polluted soils. Thus, the present study elucidates the phytoextraction capacity of three halophytes (Suaeda monoica, Tamarix indica and Cressa critica) growing in saline soil (EC 112 ds m−1), with higher level of HMs rather than a cultivated soil. The accumulation of ions in above-ground tissue was determined in the all three studied plants, considering the fact that maintaining a stable cytosolic Na+/K+ ratio has become a crucial salinity tolerance mechanism. The higher salinity of soil resulted in high level of Na+ ions in leaves, increased synthesis of osmolyte components and robust antioxidant activities to combat the oxidative stress. As whole, changes in cellular metabolites were determined by using FT-IR spectroscopy, evident as differential FT-IR profiles in both leaves and stem specific to these metabolites. The considerable amounts of HMs accumulation including Zn, Fe, Mn, Cu, Cr, and Cd with highest being Fe in above-ground tissue of all three studied halophytes were obtained. These preliminary findings represent S. monoica, T. indica and C. cretica as potent phytoremediation plant using phytosequestration to accumulate HMs. The present study project a light on the use of these three plants in reclamation of degraded saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EC:

Electric conductivity

OC:

Organic carbon

SOD:

Superoxide dismutase

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

FRAP:

Ferric reducing power

PMS:

Phenazine methosulfate

NADH:

Nicotinamide adenine dinucleotide phosphate

TPC:

Total phenolic content

FT-IR:

Fourier-transform infrared spectroscopy

References

  • Afifi AA, Youssef RA, Hussein MM (2013) Fourier transform infrared spectometry study on early stage of salt stress in jujube plant. Life Sci J 10:1973–1981

    Google Scholar 

  • Agoramoorthy G, Chen FA, Hsu MJ (2008) Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ Pollut 155:320–326

    CAS  PubMed  Google Scholar 

  • Akyuz S, Akyuz T, Celik O, Atak C (2018) FTIR spectroscopy of protein isolates of salt-tolerant soybean mutants. J Appl Spectrosc 84:1019–1023

    CAS  Google Scholar 

  • Arora J, Joshi A, Sharma V (2018) Suaeda A promising sustainable halophyte of future. Lap Lambert Academic Publishing, Mauritius

    Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    CAS  PubMed  Google Scholar 

  • Ayyappan D, Balakrishann V, Ravindran KC (2013) Potentiality of Suaeda monoica Forsk A salt marsh halophyte on restoration of saline agricultural soil. World Appl Sci J 28:2026–2032

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    CAS  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Bueno M, Lendínez ML, Calero J, del PilarCordovilla M (2020) Salinity responses of three halophytes from inland saltmarshes of Jaén (southern Spain). Flora 266:151589

    Google Scholar 

  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions:state of the art and innovation in phytoremediation. Int J Mol Sci 20:3412

    CAS  PubMed Central  Google Scholar 

  • der Ent Van, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • Devi S, Nandwal AS, Angrish R, Arya SS, Kumar N, Sharma SK (2016) Phytoremediation potential of some halophytic species for soil salinity. Int J Phytoremediat 18:693–696

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Google Scholar 

  • Farkas GL, Kiraly Z (1962) Role of phenolic compound in the physiology of plant diseases and disease resistance. Phytopathol Z 44:105–150

    CAS  Google Scholar 

  • Faustino MV, Faustino MA, Silva H, Cunha Â, Silva A, Pinto DC (2019) Puccinellia maritima, Spartina maritima, and Spartina patens halophytic grasses: characterization of polyphenolic and chlorophyll profiles and evaluation of their biological activities. Molecules 24:3796

    CAS  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghazaryan KA, Movsesyan HS, Khachatryan HE, Ghazaryan NP, Minkina TM, Sushkova SN, Mandzhieva SS, Rajput VD (2018) Copper phytoextraction and phytostabilization potential of wild plant species growing in the mine polluted areas of Armenia. Geochem Explor Environ Anal 19:155–163

    Google Scholar 

  • Ghazaryan KA, Movsesyan HS, Minkina TM, Sushkova SN, Rajput VD (2019) The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper-and molybdenum-polluted soils. Environ Geochem Health. https://doi.org/10.1007/s10653-019-00338-y

    Article  PubMed  Google Scholar 

  • Gomiero T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8:281

    Google Scholar 

  • Gowd SS, Reddy MR, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174:113–121

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int 2014:589341

    PubMed  PubMed Central  Google Scholar 

  • Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36:2090–2097

    CAS  PubMed  Google Scholar 

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, De Sousa L (2019) Global mapping of soil salinity change. Remote Sens Environ 231:111260

    Google Scholar 

  • Jain PK, Ravichandran V, Agrawal RK (2008) Antioxidant and free radical scavenging properties of traditionally used three Indian medicinal plants. Curr Trends Biotechnol Pharm 2:538–547

    Google Scholar 

  • Joshi A, Kanthaliya B, Arora J (2018) Halophytes of Thar Desert: potential source of nutrition and feedstuff. Int J Bioassays 8:5674–5683

    Google Scholar 

  • Joshi A, Kanthaliya B, Arora J (2019) Evaluation of growth and antioxidant activity in Suaeda monoica and Suaeda nudiflora Callus cultures under sequential exposure to saline conditions. Curr Biotechnol 8:42–52

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, New York, p 550

    Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    CAS  Google Scholar 

  • Khodaverdiloo H, Han FX, HamzenejadTaghlidabad R, Karimi A, Moradi N, Kazery JA (2020) Potentially toxic element contamination of arid and semi-arid soils and its phytoremediation. Arid Land Res Manag 7:1–31

    Google Scholar 

  • Kouhi SMM, Moudi M (2020) Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline–sodic soil. Environ Sci Pollut Res 27:10027–10038

    Google Scholar 

  • Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462

    CAS  PubMed  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    PubMed  PubMed Central  Google Scholar 

  • Lewicki S, Zdanowski R, Krzyzowska M, Lewicka A, Debski B, Niemcewicz M (2014) The role of chromium III in the organism and its possible use in diabetes and obesity treatment. Ann Agric Environ Med 21:331–345

    CAS  PubMed  Google Scholar 

  • Li B, Wang J, Yao L, Meng Y, Ma X, Si E, Wang H (2019) Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of heavy metal-contaminated saline soils. Plant Soil 442:323–331

    CAS  Google Scholar 

  • Liang L, Liu W, Sun Y, Huo X, Li S, Zhou Q (2017) Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ Rev 25:269–281

    CAS  Google Scholar 

  • Liu G, Xue W, Tao L, Liu X, Hou J, Wilton M et al (2014) Vertical distribution and mobility of heavy metals in agricultural soils along Jishui River affected by mining in Jiangxi Province, China. Clean Soil Air Water 42:1450–1456

    CAS  Google Scholar 

  • Lutts S, Qin P, Han RM (2016) Salinity influences biosorption of heavy metals by the roots of the halophyte plant species Kosteletzkya pentacarpos. Ecol Eng 95:682–689

    Google Scholar 

  • Milić D, Luković J, Ninkov J, Zeremski-Škorić T, Zorić L, Vasin J, Milić S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317

    Google Scholar 

  • Minkina TM, Fedorov YA, Nevidomskaya DG et al (2017) Heavy metals in soils and plants of the Don River Estuary and the Taganrog Bay coast. Eurasian Soil Sci 50:1033–1047

    CAS  Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    PubMed  PubMed Central  Google Scholar 

  • Mujeeb A, Aziz I, Ahmed MZ, Alvi SK, Shafiq S (2020) Comparative assessment of heavy metal accumulation and bio-indication in coastal dune halophytes. Ecotoxicol Environ Saf 195:110486

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P (2018) Halophytes in biosaline agriculture: mechanism, utilization, and value addition. Land Degrad Dev 29:1081–1095

    Google Scholar 

  • Nikalje GC, Kumar J, Nikam TD, Suprasanna P (2019) FT-IR profiling reveals differential response of roots and leaves to salt stress in a halophyte Sesuvium portulacastrum (L.) L. Biotechnol Rep 23:e00352

    CAS  Google Scholar 

  • Parida AK, Veerabathini SK, Kumari A, Agarwal PK (2016) Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front Plant Sci 7:351

    PubMed  PubMed Central  Google Scholar 

  • Petelka J, Abraham J, Bockreis A, Deikumah JP, Zerbe S (2019) Soil heavy metal (loid) pollution and phytoremediation potential of native plants on a former gold mine in Ghana. Water Air Soil Pollut 1:230–267

    Google Scholar 

  • Podar D, Macalik K, Réti KO, Martonos I, Török E, Carpa R, Székely G (2019) Morphological, physiological and biochemical aspects of salt tolerance of halophyte Petrosimonia triandra grown in natural habitat. Physiol Mol Biol Plants 25:1–13. https://doi.org/10.1007/s12298-019-00697-x

    Article  CAS  Google Scholar 

  • Prakash L, Prathapasenan G (1988) Effect of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice (Oryza sativa L. var. GR-3). J Agron Crop Sci 160:325–334

    CAS  Google Scholar 

  • Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38:282–295

    Google Scholar 

  • Rabhi M, Talbi O, Atia A, Abdelly C, Smaoui A (2008) Selection of a halophyte that could be used in the bioreclamation of salt-affected soils in arid and semi-arid regions. In: Abdelly C et al (eds) Biosaline agriculture and high salinity tolerance. Birkhäuser, Basel, pp 241–246

    Google Scholar 

  • Rajput VD, Chen Y, Ayup M (2015) Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth. Russ J Plant Physiol 62:229–236

    CAS  Google Scholar 

  • Rajput VD, Minkina T, Yaning C, Sushkova S, Chapligin VA, Mandzhieva S (2016) A review on salinity adaptation mechanism and characteristics of Populus euphratica, a boon for arid ecosystems. Acta Ecol Sin 36:497–503

    Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    CAS  Google Scholar 

  • Reeves RD, Baker AJM, Ilya R (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York. ISBN 0-471-19254-6

    Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    CAS  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Zaman M et al (eds) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 43–53

    Google Scholar 

  • Stanković MS, Petrović M, Godjevac D, Stevanović ZD (2015) Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: are there any prospective medicinal plants? J Arid Environ 120:26–32

    Google Scholar 

  • Thatoi HN, Patra JK, Das SK (2014) Free radical scavenging and antioxidant potential of mangrove plants: a review. Acta Physiol Plant 36:561–579

    CAS  Google Scholar 

  • Tüzen M (2003) Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J 74:289–297

    Google Scholar 

  • USDA Handbook (1960) Diagnosis and improvement of saline and alkali soils. In: Richards LA (ed) Oxford & IBH Publ Co. Pvt. Ltd., New Delhi, p 60

  • Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146

    Google Scholar 

  • Volkov V, Flowers TJ (2019) Mechanisms of ion transport in halophytes: from roots to leaves. In: Gul B et al (eds) Sabkha ecosystems, tasks for vegetation science VI. Springer, Cham, pp 125–150

    Google Scholar 

  • Wang SL, Liao WB, Yu FQ, Liao B, Shu WS (2009) Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environ Geol 58:471–476

    CAS  Google Scholar 

  • Wang R, Wang X, Liu K, Zhang XJ, Zhang LY, Fan SJ (2020) Comparative transcriptome analysis of halophyte Zoysia macrostachya in response to salinity stress. Plants 9:458

    PubMed Central  Google Scholar 

  • Westworth S, Ashwath N, Cozzolino D (2019) Application of FTIR-ATR spectroscopy to detect salinity response in Beauty Leaf Tree (Calophyllum inophyllum L). Energy Procedia 160:761–768

    CAS  Google Scholar 

  • Yang C, Zheng S, Huang H, Liu Z, Zheng W, Liu B, Shi D (2012) Comparison of osmotic adjustment and ion balance strategies in nineteen alkali-tolerant halophyte species during adaptation to salt-alkalinized habitats in northeast China. Aust J Crop Sci 6:141

    Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulatorThlaspi caerulescens. Plant Soil 249:37–43

    CAS  Google Scholar 

  • Zhu G, Xiao H, Guoc Q, Song B, Zheng G, Zhang Z, Zhao J, Okoli CP (2018) Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead–zinc mining area in Guangxi, Southwest China. Ecotoxicol Environ Saf 151:266–271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Abhishek Joshi acknowledge the support of UGC, New Delhi, for the award of BSR meritorious fellowship [25-1/2014-15(BSR) 7-125/2007(BSR)] and Ministry of Science and Higher Education of the Russian Federation (No. 0852-2020-0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Arora.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Kanthaliya, B., Rajput, V. et al. Assessment of phytoremediation capacity of three halophytes: Suaeda monoica, Tamarix indica and Cressa critica. BIOLOGIA FUTURA 71, 301–312 (2020). https://doi.org/10.1007/s42977-020-00038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42977-020-00038-0

Keywords

Navigation