Skip to main content
Log in

Unseen rare tree species in southeast Brazilian forests: a species abundance distribution approach

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Rarity is an important aspect of biodiversity often neglected in ecological studies. Species abundance distributions (SADs) are useful tools to describe patterns of commonness–rarity in ecological communities. Most studies assume field observations of species relative abundances are approximately equal to their true relative abundances, thus dismissing the potential for, and importance of unseen rare species. Here, we adopted the approach proposed by Chao et al. (Ecol, 96:1189–1201, 2015) to estimate the number and abundance of unseen species, and thus the true SADs, for tree species in 48 forest sites in Minas Gerais state, Brazil (4 rainforests, 35 semideciduous forests, and 9 deciduous forests). Also, we assessed the correlations between both unseen and rare species and sampling protocol and environment characteristics (climate, terrain, terrain heterogeneity). We found estimated true SADs invariably had higher species richness values than observed in the surveys, due to the increase in rare species. We estimate that up to 55.6% of tree species per site were unseen (8.5–55.6%), with an average of 26.6%. The estimated percentage of rare species per site was between 31.9% and 72.8%, with an average of 57.78%. We found rarity to be most strongly correlated with the percentage of unidentified trees, local terrain conditions and heterogeneity at site-level. Semideciduous forest and rainforest had similar higher percentages of unseen species (c. 27.2%) when compared to deciduous forests, probably due to the relatively higher local heterogeneity of these forests, which may provide more niches for rare species. Future studies should consider estimating true species abundances to better assess biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Supplementary material.

References

  • Albuquerque, U. P., Araújo, E. L., El-Deir, A. C. A. L., Souto, A., Bezerra, B. M., Ferraz, E. M. N., et al. (2012). Caatinga revisited: Ecology and conservation of an important seasonal dry forest. The Scientific World Journal, 2012, 1–18. https://doi.org/10.1100/2012/205182.

    Article  Google Scholar 

  • Archaux, F., Camaret, S., Dupouey, J.-L., Ulrich, E., Corcket, E., Bourjot, L., et al. (2009). Can we reliably estimate species richness with large plots? an assessment through calibration training. Plant Ecology, 203, 303–315. https://doi.org/10.1007/s11258-008-9551-6.

    Article  Google Scholar 

  • Arellano, G., Umaña, M. N., Macía, M. J., Loza, M. I., Fuentes, A., Cala, V., et al. (2017). The role of niche overlap, environmental heterogeneity, landscape roughness and productivity in shaping species abundance distributions along the Amazon-Andes gradient. Global Ecology Biogeography, 26, 191–202. https://doi.org/10.1111/geb.12531.

    Article  Google Scholar 

  • Béguinot, J. (2018). Numerical extrapolation of the species abundance distribution unveils the true species richness and the hierarchical structuring of a partially sampled marine gastropod community in the Andaman Islands (India). Asian Journal of Environment and Ecology, 6, 1–23. https://doi.org/10.9734/ajee/2018/41293.

    Article  Google Scholar 

  • Berdugo, M., Maestre, F. T., Kéfi, S., Gross, N., Le Bagousse-Pinguet, Y., & Soliveres, S. (2019). Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. Journal of Ecology, 107, 190–202. https://doi.org/10.1111/1365-2745.13006.

    Article  Google Scholar 

  • Boyle, B., Hopkins, N., Lu, Z., Raygoza Garay, J. A., Mozzherin, D., Rees, T., et al. (2013). The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics, 14, 1–14. https://doi.org/10.1186/1471-2105-14-16.

    Article  Google Scholar 

  • Bridgewater, S., Ratter, J. A., & Felipe Ribeiro, J. (2004). Biogeographic patterns, β-diversity and dominance in the cerrado biome of Brazil. Biodiversity and Conservation, 13, 2295–2318. https://doi.org/10.1023/B:BIOC.0000047903.37608.4c.

    Article  Google Scholar 

  • Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265–270.

    Google Scholar 

  • Chao, A., Hsieh, T. C., Chazdon, R. L., Colwell, R. K., & Gotelli, N. J. (2015). Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology, 96, 1189–1201. https://doi.org/10.1890/14-0550.1.

    Article  PubMed  Google Scholar 

  • Coelho, G. A. O., Terra, M. C. N. S., Almeida, H. S., & van den Berg, E. (2016). What can natural edges of gallery forests teach us about woody community performance in sharp ecotones? Journal of Plant Ecology, 10, 937–948. https://doi.org/10.1093/jpe/rtw083.

    Article  Google Scholar 

  • Comita, L. S., Muller-Landau, H. C., Aguilar, S., & Hubbell, S. P. (2010). Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330–332. https://doi.org/10.1126/science.1190772.

    Article  CAS  PubMed  Google Scholar 

  • de Prado, P. I. K. L. (2009). Distribuições de abundâncias de espécies: avanços analíticos para entender um padrão básico em ecologia. Ciência & Ambiente, 1, 121–136.

    Google Scholar 

  • Eisenlohr, P. V., & Oliveira-Filho, A. T. (2015). Revisiting patterns of tree species composition and their driving forces in the Atlantic forests of Southeastern Brazil. Biotropica. https://doi.org/10.1111/btp.12254.

    Article  Google Scholar 

  • Fagundes, L. M., de Carvalho, D. A., van den Ber, E., Marques, J. J. G. S., & Machado, E. L. M. (2007). Florística e estrutura do estrato arbóreo de dois fragmentos de florestas decíduas às margens do rio Grande, em Alpinópolis e Passos, MG, Brasil. Acta Bot Brasil, 21, 65–78. https://doi.org/10.1590/s0102-33062007000100007.

    Article  Google Scholar 

  • Fávero, A. A., Costa, M. D. P., Figueira, M., Andriollo, D. D., & Longhi, S. J. (2015). Distribuição de abundância de espécies da comunidade arbórea do topo de um morro na floresta estacional subtropical. Ciência Rural, 45, 806–813. https://doi.org/10.1590/0103-8478cr20121238.

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. https://doi.org/10.1002/joc.5086.

    Article  Google Scholar 

  • Flather, C. H., & Sieg, C. H. (2001). Species rarity: definition, causes, and classification. In M. G. Raphael & R. Molina (Eds.), Conservation of rare or little-known species: biological, social, and economic considerations (pp. 40–66). Washington: Island Press.

    Google Scholar 

  • Furniss, T. J., Larson, A. J., & Lutz, J. A. (2017). Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere, 8, e01847. https://doi.org/10.1002/ecs2.1847.

    Article  Google Scholar 

  • Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40, 237–264.

    Article  Google Scholar 

  • Good, I. J. (2000). Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval enigma. Journal of Statistical Computation and Simulation, 66, 101–111.

    Article  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.

    Article  Google Scholar 

  • Hubbell, (2013). Tropical rain forest conservation and the twin challenges of diversity and rarity. Ecology and Evolution, 3, 3263–3274.

    PubMed  PubMed Central  Google Scholar 

  • Hubbell, S. P. (2001). The Unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Jordano, P. (2016). Sampling networks of ecological interactions. Functional Ecology, 30, 1883–1893. https://doi.org/10.1111/1365-2435.12763.

    Article  Google Scholar 

  • Kunin, W. E., & Gaston, K. J. (1993). The biology of rarity: patterns, causes and consequences. Trends in Ecology and Evolution, 8, 298–301.

    Article  CAS  PubMed  Google Scholar 

  • Leitão, R. P., Zuanon, J., Villéger, S., Williams, S. E., Baraloto, C., Fortunel, C., et al. (2016). Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society B: Biological Sciences, 283, 20160084. https://doi.org/10.1098/rspb.2016.0084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenza, E., Santos, J. O., & Maracahipes-Santos, L. (2015). Species composition, diversity, and vegetation structure in a gallery forest-cerrado sensu stricto transition zone in eastern Mato Grosso, Brazil. Acta Bot Brasil, 29, 327–338. https://doi.org/10.1590/0102-33062014abb3697.

    Article  Google Scholar 

  • Letcher, S. G., Lasky, J. R., Chazdon, R. L., Norden, N., Wright, S. J., Meave, J. A., et al. (2015). Environmental gradients and the evolution of successional habitat specialization: A test case with 14 Neotropical forest sites. Journal of Ecology, 103, 1276–1290. https://doi.org/10.1111/1365-2745.12435.

    Article  Google Scholar 

  • Markham, J. (2014). Rare species occupy uncommon niches. Scientific Reports, 4, 63–65. https://doi.org/10.1038/srep06012.

    Article  CAS  Google Scholar 

  • McGill, B. J. (2011). Species abundance distribution. In A. E. Magurran & B. J. McGill (Eds.), Biological diversity: frontiers in measurement and assessment (pp. 105–122). Oxford: Oxford University Press.

    Google Scholar 

  • McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Anderson, M. J., Benecha, H. K., et al. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995–1015. https://doi.org/10.1111/j.1461-0248.2007.01094.x.

    Article  PubMed  Google Scholar 

  • Naves, R. P., Gandolfi, S., & Rother, D. C. (2015). Comparando padrões de distribuição de densidade, diâmetro e abundância de espécies em áreas em processo de restauração. Hoehnea, 42, 737–748. https://doi.org/10.1590/2236-8906-11/rad/2015.

    Article  Google Scholar 

  • Neeson, T. M., Doran, P. J., Ferris, M. C., Fitzpatrick, K. B., Herbert, M., Khoury, M., et al. (2018). Conserving rare species can have high opportunity costs for common species. Global Change Biology, 24, 3862–3872. https://doi.org/10.1111/gcb.14162.

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Maintainer HW (2019) Package “vegan” Title Community Ecology Package. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 25 August 2019

  • Oliveira-Filho, A. T., & Fontes, M. A. L. (2000). Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica, 32, 793–810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x.

    Article  Google Scholar 

  • Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology, 87, 2614–2625.

    Article  PubMed  Google Scholar 

  • Pitman, N. C. A., Silman, M. R., & Terborgh, J. W. (2013). Oligarchies in amazonian tree communities: A ten-year review. Ecography, 36, 114–123. https://doi.org/10.1111/j.1600-0587.2012.00083.x.

    Article  Google Scholar 

  • Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021.

    Article  Google Scholar 

  • Rodrigues, A. C., Villa, P. M., & Neri, A. V. (2019). Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecological Indicators, 102, 208–217. https://doi.org/10.1016/J.ECOLIND.2019.02.033.

    Article  Google Scholar 

  • Scolforo, H. F., Scolforo, J. R. S., Mello, C. R., Mello, J. M., & Ferraz Filho, A. C. (2015). Spatial distribution of aboveground carbon stock of the arboreal vegetation in Brazilian biomes of Savanna, Atlantic Forest and semi-arid woodland. PLoS ONE, 10, e0128781. https://doi.org/10.1371/journal.pone.0128781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scolforo, J. R. S., & Carvalho, L. M. T. (2006). Mapeamento e inventário da flora nativa e dos reflorestamentos de Minas Gerais. Lavras: Editora UFLA.

    Google Scholar 

  • Scott, W. A., & Hallam, C. J. (2003). Assessing species misidentification rates through quality assurance of vegetation monitoring. Pl Ecol, 165, 101–115. https://doi.org/10.1023/A:1021441331839.

    Article  Google Scholar 

  • Silva, I. A., Cianciaruso, M. V., & Batalha, M. A. (2010). Abundance distribution of common and rare plant species of Brazilian savannas along a seasonality gradient. Acta Bot Brasil, 24, 407–413. https://doi.org/10.1590/S0102-33062010000200011.

    Article  Google Scholar 

  • Silveira, E. M. O., Cunha, L. I. F., Galvão, L. S., Withey, K. D., Acerbi Júnior, F. W., & Scolforo, J. R. S. (2019d). Modelling aboveground biomass in forest remnants of the Brazilian Atlantic Forest using remote sensing, environmental and terrain-related data. Geocarto International. https://doi.org/10.1080/10106049.2019.1594394.

    Article  Google Scholar 

  • Silveira, E. M. O., Espírito-Santo, F., Wulder, M. A., Acerbi-Junior, F. W., Carvalho, M. C., Mello, C. R., et al. (2019a). Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management, 445, 96–109. https://doi.org/10.1016/j.foreco.2019.05.016.

    Article  Google Scholar 

  • Silveira, E. M. O., Silva, S. H. G., Acerbi-junior, F. W., Carvalho, M. C., Carvalho, L. M. T., Scolforo, J. R. S., et al. (2019b). Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment. International Journal of Applied Earth Observation Geoinformation, 78, 175–188. https://doi.org/10.1016/j.jag.2019.02.004.

    Article  Google Scholar 

  • Silveira, E. M. O., Terra, M. C. N. S., Acerbi-Júnior, F. W., & Scolforo, J. R. S. (2019c). Estimating aboveground biomass loss from deforestation in the savanna and semi-arid biomes of Brazil between 2007 and 2017. In M. N. Suratman, Z. A. Latif, G. de Oliveira, N. Brunsell, Y. Shimabukuro, & C. A. C. dos Santos (Eds.), Tropical forests in transition—the role of deforestation and impacts from community composition to regional climate change (pp. 1–17). London: IntechOpen. https://doi.org/10.5772/intechopen.85660.

    Chapter  Google Scholar 

  • Slik, J. W. F., Arroyo-Rodríguez, V., Aiba, S.-I., et al. (2015). An estimate of the number of tropical tree species. Proceedings of National Academy of Science USA, 112, 7472–7477. https://doi.org/10.1073/pnas.1423147112.

    Article  CAS  Google Scholar 

  • Tabarelli, M., Peres, C. A., & Melo, F. P. L. (2012). The “few winners and many losers” paradigm revisited: Emerging prospects for tropical forest biodiversity. Biological Conservation, 155, 136–140. https://doi.org/10.1016/j.biocon.2012.06.020.

    Article  Google Scholar 

  • ter Steege, H., Pitman, N. C., Sabatier, D., et al. (2013). Hyperdominance in the Amazonian tree flora. Science, 342, 1243092. https://doi.org/10.1126/science.1243092.

    Article  CAS  PubMed  Google Scholar 

  • Terra, M. C. N. S., dos Santos, R. M., Fontes, M. A. L., de Mello, J. M., Scolforo, J. R. S., Gomide, L. R., et al. (2017). Tree dominance and diversity in Minas Gerais, Brazil. Biodiversity and Conservation, 26, 2133–2153. https://doi.org/10.1007/s10531-017-1349-1.

    Article  Google Scholar 

  • Terra, M. C. N. S., Mello, J. M., Mello, C. R., Santos, R. M., Nunes, A. C. R., & Raimundo, M. R. (2015). Influência topo-edafo-climática na vegetação de um fragmento de Mata Atlântica na Serra da Mantiqueira, MG. Ambiagua, 10, 928–942. https://doi.org/10.4136/ambi-agua.1705.

    Article  CAS  Google Scholar 

  • Terra, M. C. N. S., Santos, R. M., Prado Júnior, J. A., Mello, J. M., Scolforo, J. R. S., Fontes, M. A. L., et al. (2018). Water availability drives gradients of tree diversity, structure and functional traits in the Atlantic-Cerrado-Caatinga transition, Brazil. Journal of Plant Ecology, 11, 803–814. https://doi.org/10.1093/jpe/rty017.

    Article  Google Scholar 

  • Tokeshi, M. (1990). Niche apportionment or random assortment: Species abundance patterns revisited. Journal of Animal Ecology, 59, 1129–1146. https://doi.org/10.2307/5036.

    Article  Google Scholar 

  • Tovo, A., Suweis, S., Formentin, M., Favretti, M., Volkov, I., Banavar, J. R., et al. (2017). Upscaling species richness and abundances in tropical forests. Science Advances, 3, e1701438. https://doi.org/10.1126/sciadv.1701438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa, P. M., Martins, S. V., Rodrigues, A. C., Safar, N. V. H., Bonilla, M. A. C., & Ali, A. (2019). Testing species abundance distribution models in tropical forest successions: Implications for fine-scale passive restoration. Ecological Engineering, 135, 28–35. https://doi.org/10.1016/j.ecoleng.2019.05.015.

    Article  Google Scholar 

  • Wang, Q., Su, X., Shrestha, N., Liu, Y., Wang, S., Xu, X., et al. (2017). Historical factors shaped species diversity and composition of Salix in eastern Asia. Scientific Reports, 7, 1–10. https://doi.org/10.1038/srep42038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, J. B. (2011). The twelve theories of co-existence in plant communities: the doubtful, the important and the unexplored. Journal of Vegetation Science, 22, 184–195.

    Article  Google Scholar 

  • Zhang, J., Qiao, X., Liu, Y., Lu, J., Jiang, M., Tang, Z., et al. (2015). Species-abundance distributions of tree species varies along climatic gradients in China’s forests. Journal of Plant Ecology, 9, 240. https://doi.org/10.1093/jpe/rtv055.

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Programa de Pós-Graduação em Engenharia Florestal (Universidade Federal de Lavras) for the postdoc position opportunity. This study was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Funding

This study was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela de Castro Nunes Santos Terra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terra, M.d.C.N.S., Silveira, E.M.d.O., Withey, K.D. et al. Unseen rare tree species in southeast Brazilian forests: a species abundance distribution approach. COMMUNITY ECOLOGY 21, 229–238 (2020). https://doi.org/10.1007/s42974-020-00025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-020-00025-4

Keywords

Navigation