Skip to main content
Log in

Vermicomposting: an eco-friendly approach for waste management and nutrient enhancement

  • Review Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Vermicomposting creates a window of opportunity for microbes and earthworms to act together for waste degradation and nutrient enrichment. In view of its eco-friendly nature, vermicomposting is widely used around the world for decomposing different organic materials into environment-friendly products. Reports of vermicast having a superior quality over traditional compost have been observed in the form of macronutrients and various other physicochemical properties. In this review, we focus on the recent developments made towards the significance of vermicomposting, vermi-technology, the properties of vermicast and their potential application in the enhancement of plants growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalok A, Tripathi AK, Soni P (2008) Vermicomposting: a better option for organic solid waste management. J Hum Ecol 24(1):59–64

    Article  Google Scholar 

  • Abbasi T, Gajalakshmi S, Abbasi SA (2009) Towards modelling and design of vermicomposting systems: mechanisms of composting/vermicomposting and their implications. Indian J Biotechnol 8(2):177–182

    Google Scholar 

  • Aderounmu AF, Ogunwande OA (2019) Influence of vermicast on early growth of black afara (Terminalia ivorensis A. Chev.) Seedlings. JASEM 23(9):1621–1624

    Article  CAS  Google Scholar 

  • Adhikary S (2012) Vermicompost, the story of organic gold: a review. J Agric Sci 3(7):905–917

    Google Scholar 

  • Ahadi N, Sharifi Z, Hossaini SM, Rostami A, Renella G (2020) Remediation of heavy metals and enhancement of fertilizing potential of a sewage sludge by the synergistic interaction of woodlice and earthworms. J Hazard Mater 385:121573

    Article  CAS  PubMed  Google Scholar 

  • Ahluwalia IJ, Patel U (2018) Solid waste management in India: an assessment of resource recovery and environmental impact. Indian council for research in on international economic relations (ICER). http://hdl.handle.net/11540/8143. Accessed on 4 Aug 2021

  • Alagesan P, Dheeba R (2010) Utilization of earthworms in organic waste management. In: Proceedings of the 15th international forestry and environment symposium, vol 26, no 15, p 27

  • Alikhani HA, Hemati A, Rashtbari M, Tiegs SD, Etesami H (2017) Enriching vermicompost using P-solubilizing and N-fixing bacteria under different temperature conditions. Commun Soil Sci Plant Anal 48(2):139–147

    Article  CAS  Google Scholar 

  • Anand K, Sinha PB (2020) Vermitechnology: a solution for agricultural waste. In: Proceedings of innovative waste management technologies for sustainable development, IGI Global, pp 273–290

  • Ansari A, Ismail S (2012) Role of earthworms in vermitechnology. J Agric Technol 8:403–415

    Google Scholar 

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84(1):7–14

    Article  CAS  PubMed  Google Scholar 

  • Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JW, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221

    Article  CAS  PubMed  Google Scholar 

  • Baghbani-Arani A, Modarres-Sanavy A, Mashhadi-Akbar-Boojar M, Mokhtassi-Bidgoli A (2017) Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Ind Crops Prod 109:346–357

    Article  CAS  Google Scholar 

  • Balachandar R, Biruntha M, Yuvaraj A, Thangaraj R, Subbaiya R, Govarthanan M, Kumar P, Karmegam N (2021) Earthworm intervened nutrient recovery and greener production of vermicompost from Ipomoea staphylina-an invasive weed with emerging environmental challenges. Chemosphere 263:128080

    Article  CAS  PubMed  Google Scholar 

  • Becker B (1991) The benefit of earthworms. Natural food and farming 12

  • Beetz A (1999) Worms for composting (vermicomposting). ATTRA-National Sustainable Agriculture Information Service, Livestock Technical Note

  • Bhat SA, Singh J, Vig AP (2013) Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny. Environ Sci Pollut Res 20:5975–5982

    Article  CAS  Google Scholar 

  • Bhat SA, Singh S, Singh J, Kumar S, Vig AP (2018) Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour Technol 252:172–179

    Article  CAS  PubMed  Google Scholar 

  • Ceccanti B, Masciandaro G (1999) Researchers study vermicomposting of municipal and paper mill sludge’s. Biocycle 40(6):71–72

    Google Scholar 

  • Central pollution control board (CPCB) India (2018) MSW-generation and composition. https://cpcb.nic.in/uploads/MSW/Waste_generation_Composition.pdf. Accessed 7 Aug 2021

  • Chaudhari PS, Bhattacharjee G (2002) Capacity of various experimental diets to support biomass and reproduction of Perionyx excavatus. Bioresour Technol 82:147–150

    Article  Google Scholar 

  • Chojnacka K, Moustakas K, Witek-Krowiak A (2020) Bio-based fertilizers: a practical approach towards circular economy. Bioresour Technol 295:122223

    Article  CAS  PubMed  Google Scholar 

  • Collier J (1978) Use of earthworms in sludge lagoons. In: Hartenstein R (ed) Utilizations of soil organism in sludge management, Virginia, USA, pp 133–137

  • Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L (2008) Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biol Biochem 40(7):1954–1959

    Article  CAS  Google Scholar 

  • Darwin C (1881) Movements of plants. Nature 23(592):409

    Article  Google Scholar 

  • Das S, Deka P, Goswami L, Sahariah B, Hussain N, Bhattacharya SS (2016) Vermiremediation of toxic jute mill waste employing Metaphire posthuma. Environ Sci Pollut Res 23:15418–15431

    Article  CAS  Google Scholar 

  • Debnath S, Chaudhuri PS (2020) Growth and reproduction of Perionyx excavatus (Perrier) during vermicomposting of different plant residues. Nat Environ Pollut Technol 19(5):1937–1943

    Article  CAS  Google Scholar 

  • Devi J, Deb U, Barman S, Das S, Bhattacharya SS, Tsang YF, Kim KH (2020) Appraisal of lignocellusoic biomass degrading potential of three earthworm species using vermireactor mediated with spent mushroom substrate: compost quality, crystallinity, and microbial community structural analysis. Sci Total Environ 716:135215

    Article  CAS  PubMed  Google Scholar 

  • Devkota D, Dhakal SC, Dhakal D, Dhakal DD, Ojha RB (2014) Economics of production and marketing of vermicompost in Chitwan, Nepal. Int J Agric Soil Sci 2(7):112–117

    Google Scholar 

  • Dhanuja C, Saxena DK, Abbas T, Abbasi SA (2019) Effect of application of vermicompost on methane emission and grain yield of ChinnaPonni paddy crop. Paddy Water Environ 17(4):797–802

    Article  Google Scholar 

  • Dominguez J, Edwards CA, Subler S (1997) A comparison of vermicomposting and composting. Biocycle 38:57–59

    CAS  Google Scholar 

  • Domínguez J (2004) 20 State-of-the-art and new perspectives on vermicomposting research. Earthworm ecology. CRC Press, Boca Raton, pp 401–424

    Chapter  Google Scholar 

  • Domínguez J, Edwards CA (2011) Biology and ecology of earthworms species used for vermicomposting. In: Edwards CA, Arancon NQ, Sherman RL (eds) Vermiculture technology: earthworms, organic waste and environmental management. CRC Press, Boca Raton, pp 27–40

    Google Scholar 

  • Domínguez J, Edwards CA, Webster M (2000) Vermicomposting of sewage sludge: effect of bulking materials on the growth and reproduction of the earthworm Eisenia andrei. Pedobiologia 44(1):24–32

    Article  Google Scholar 

  • Edwards CA (1988) Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Edwards CA, Neuhauser EP (eds) Earthworms in waste and environmental management. SPB Academic Publication, Hague

    Google Scholar 

  • Edwards CA, Arancon NQ (2004) The use of earthworms in the breakdown of organic wastes to produce vermicomposts and animal feed protein. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC Press, Boca Raton, pp 345–380

    Chapter  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworm, vol 2. Chapman and Hall, London, p 46

    Google Scholar 

  • Edwards CA, Lofty JR (1977) Biology of earthworms. Chapman and Hall Ltd, London, p 283

    Book  Google Scholar 

  • Edwards CA, Dominguez J, Neuhauser EF (1998) Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management. Biol Fertil Soils 27(2):155–161

    Article  Google Scholar 

  • Edwards CA, Arancon NQ, Sherman RL (2010) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press LLC, Boca Raton

    Book  Google Scholar 

  • Estrada-Bonilla GA, Durrer A, Cardoso EJ (2021) Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl Soil Ecol 157:103760

    Article  Google Scholar 

  • Falco ED, Celano G, Vittal A (2021) Effect of growing media added with vermicompost on different horticultural species in a controlled environment. JSSPP 3(1):131

    Google Scholar 

  • Gajalakshmi S, Ramasamy EV, Abbasi SA (2005) Composting–vermicomposting of leaf litter ensuing from the trees of mango (Mangifera indica). Bioresour Technol 96(9):1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Ganguly RK, Chakraborty SK (2020) Eco-management of industrial organic wastes through the modified innovative vermicomposting process: a sustainable approach in tropical countries. In: Bhat S, Vig A, Li F, Ravindra B (eds) Earthworm assisted remediation of effluents and wastes. Springer, Singapore, pp 161–177

    Chapter  Google Scholar 

  • Garg VK, Gupta R (2011) Effect of temperature variations on vermicomposting of household solid waste and fecundity of Eisenia fetida. Bioremediation J 15(3):165–172

    Article  Google Scholar 

  • Garg VK, Chand S, Chhillar A, Yadav A (2005) Growth and reproduction of Eisenia foetida in various animal wastes during vermicomposting. Appl Ecol Environ Res 3(2):51–59

    Article  Google Scholar 

  • Georg (2004) Feasibility of developing the organic and transitional farm markets for processing municipal and farm organic waste using large scale vermicomposting. Publication of good earth organic resources group, Halifax, Nova scotia, Canada. http://www.alternativeorganic.com. Accessed 29 July 2021

  • Gomez-Eyles JL, Sizmur T, Collins CD, Hodson ME (2011) Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ Pollut 159(2):616–622

    Article  CAS  PubMed  Google Scholar 

  • Graff O (1981) Preliminary experiment of vermicomposting of different waste materials using Eudrilus eugeniae (Kingberg). In: Proceedings of the workshop on ‘role of earthworms in the stabilization of organic residues, pp 179–191

  • Gupta RK, Ladha JK, Singh J, Singh G, Pathak H (2007) Yield and phosphorus transformations in a rice–wheat system with crop residue and phosphorus management. Soil Sci Soc Am J 71(5):1500–1507

    Article  CAS  Google Scholar 

  • Gupta R, Yadav A, Garg VK (2014) Influence of vermicompost application in potting media on growth and flowering of marigold crop. Int J Recycl Org Waste Agric 3(1):47

    Article  Google Scholar 

  • Gupta C, Prakash D, Gupta S, Nazareno MA (2019) Role of vermicomposting in agricultural waste management. Sustainable green technologies for environmental management. Springer, Singapore, pp 283–295

    Chapter  Google Scholar 

  • Hafez M, Elbarbary TA, Ibrahim I, Abdel-Fatah Y (2016) Azotobacter vinelandii evaluation and optimization of Abu Tartur Egyptian phosphate ore dissolution. Saudi J Pathol Microbiol 1:80–93

    Google Scholar 

  • Hansen J (2018) EU must get serious about promoting the circular economy. https://www.theparliamentmagazine.eu/articles/partner_article/. Accessed 22 July 2021

  • Hao X, Benke MB (2008) Nitrogen transformation and losses during composting and mitigation strategies. Dyn Soil Dyn Plant 2(1):10–18

    Google Scholar 

  • Hartenstein R, Bisesi MS (1989) Use of earthworm biotechnology for the management of effluents from intensively housed livestock. Outlook Agric 18:72–76

    Article  Google Scholar 

  • Hernández-Castellanos B, Ortíz-Ceballos A, Martínez-Hernández S, Noa-Carrazana JC et al (2013) Removal of benzo(a) pyrene from soil using an endogeic earthworm Pontoscolex coerthrurus (Muller, 1857). Appl Soil Ecol 70:62–69

    Article  Google Scholar 

  • Hu X, Zhang T, Tian G, Zhang L, Bian B (2021) Pilot-scale vermicomposting of sewage sludge mixed with mature vermicompost using earthworm reactor of frame composite structure. Sci Total Environ 767:144217

    Article  CAS  PubMed  Google Scholar 

  • Joseph R, Peedika MD, Saminathan K, Narendhirakannan RT, Karmeham N, Kathireswari P (2020) Nutrient recovery and vermisompost production from livestock solid wastes with epigeic earthworms. Bioresour Technol 313:123690

    Article  CAS  Google Scholar 

  • Joshi R, Ahmed S (2016) Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci 2(1):1139434

    Article  Google Scholar 

  • Kale RD (1991) Vermiculture: scope for new biotechnology. ZSI Publication, Calcutta

    Google Scholar 

  • Kale RD (1995) Vermicomposting has a bright scope. Indian Silk 3:6–9

    Google Scholar 

  • Kale RD, Karmegam N (2010) The role of earthworms in tropics with emphasis on Indian ecosystems. Appl Environ Soil Sci 2010:1–6

    Article  CAS  Google Scholar 

  • Kale RD, Krishnamoorthy RV (1981) Litter preferences in the earthworm, Lampito mauritii. Proc Indian Acad Sci Anim Sci 90:123–128

    Google Scholar 

  • Karmegam N, Daniel T (2008) Effect of vermicompost and chemical fertilizer on growth and yield of hyacinth bean, Lablab purpureus (L.) Sweet. Dyn Soil Dyn Plant 2(2):77–81

    Google Scholar 

  • Karmegam N, Vijayan P, Prakash M, Paul JAJ (2019) Vermicomposting of paper industry sludge with cow dung and green manure plants using Eisenia fetida: a viable option for cleaner and enriched vermicompost production. J Clean Prod 228:718–728

    Article  CAS  Google Scholar 

  • Kashem MA, Sarker A, Hossain I, Islam MS (2015) Comparison of the effect of vermicompost and inorganic fertilizers on vegetative growth and fruit production of tomato (Solanum lycopersicum L.). Open J Soil Sci 5:53–58

    Article  Google Scholar 

  • Kaur T (2020) Vermicomposting: an effective option for recycling organic wastes. In: Das SK (ed) Organic agriculture. Intech, London, pp 45–55

    Google Scholar 

  • Kaushal BR, Bisht SPS (1992) Growth and cocoon production of Drawida nepalensis (oligochaeta). Biol Fertil Soils 14:205–212

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganism. Principal and application of microbes technology. Springer, Cham, pp 31–62

    Google Scholar 

  • Khwairakpam M, Bhargava R (2009) Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresour Technol 100:5846–5852

    Article  CAS  PubMed  Google Scholar 

  • Kiran S (2019) Effects of vermicompost on some morphological, physiological and biochemical parameters of lettuce (Lactuca sativa var. crispa) under drought stress. Not Bot Horti Agrobot Cluj Napoca 47(2):352–358

    Article  CAS  Google Scholar 

  • Kiyasudeen K, Jessy RS, Ibrahim MH (2014) Earthworm’s gut as reactor in vermicomposting process: a mini review. Int J Sci Res 4(7):1–6

    Google Scholar 

  • Kiyasudeen K, Ibrahim MH, Ismail SA (2020) Vermicomposting of organic wastes and the production of vermicompost. In: Rathinam NK, Sani RK (eds) Biovalorisation of wastes to renewable chemicals and biofuels. Elsevier, Amsterdam, pp 277–285

    Chapter  Google Scholar 

  • Kretzschmar A, Bruchou C (1991) Weight response to the soil water potential of the earthworm Aporrectodea longa. Biol Fertil Soils 12(3):209–212

    Article  Google Scholar 

  • Kumawat N, Kumar R, Kumar S, Meena VS (2017) Nutrient solubilizing microbes (NSMs): its role in sustainable crop production. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 25–61

    Chapter  Google Scholar 

  • Lalander CH, Komakech AJ, Vinneras B (2015) Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study. Waste Manag 39:96–103

    Article  PubMed  Google Scholar 

  • Lavelle P (1988) Earthworm activities and the soil system. Biol Fertil Soils 6(3):237–251

    Article  Google Scholar 

  • Liang SH, Chen SC, Chen CY, Kao CM, Yang JI, Shieh BS (2011) Cadmium-induced earthworm metallothionein-2 is associated with metal accumulation and counteracts oxidative stress. Pedobiologia 54:333–340

    Article  CAS  Google Scholar 

  • Lim PN, Wu TY, Clarke C, Daud NN (2015) A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae. Int J Environ Sci Technol 12(8):2533–2544

    Article  CAS  Google Scholar 

  • Liu X, Hu C, Zhang S (2005) Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge. Environ Int 31:874–879

    Article  CAS  PubMed  Google Scholar 

  • Lotzof M (2000) Vermiculture: an Australian technology success story. Waste Manag Mag Australia

  • Lv B, Zhang D, Cui Y, Yin F (2018) Effect of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour Technol 268:408–414

    Article  CAS  PubMed  Google Scholar 

  • Lv B, Cui Y, Wei H, Chen Q, Zhang D (2020) Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw. J Hazard Mater 400:123215

    Article  CAS  PubMed  Google Scholar 

  • Mahanta K, Jha DK, Rajkhowa DJ, Manoj-Kumar, (2012) Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biol Agric Hortic 28(4):241–250

    Article  Google Scholar 

  • Mahmud M, Abdullah R, Yaacob JS (2020) Effect of vermicompost on growth, plant nutrient uptake and bioactivity of ex vitro pineapple (Ananas comosus var. MD2). Agronomy 10(9):1333

    Article  CAS  Google Scholar 

  • Messiga AJ, Hao X, Dorais M, Bineng CS, Ziadi N (2020) Supplement of biochar and vermicompost amendments in coir and peat growing media improves N management and yields of leafy vegetables. Can J Soil Sci 1:1–14. https://doi.org/10.1139/cjss-2020-0059

    Article  CAS  Google Scholar 

  • Mupambwa HA, Mnkeni PNS (2018) Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review. Environ Sci Pollut Res 25(11):10577–10595

    Article  Google Scholar 

  • Muyima NYO, Reinecke AJ, Vlljoen-Reinecke SA (1994) Moisture requirements of Dendrobaenaveneta (Oligochaeta), a candidate for vermicomposting. Soil Biol Biochem 26(8):973–976

    Article  Google Scholar 

  • Nair J, Sekiozoic V, Anda M (2006) Effect of pre-composting on vermicomposting of kitchen waste. Bioresour Technol 97:2091–2095

    Article  CAS  PubMed  Google Scholar 

  • Nannoni F, Rossi S, Protano G (2014) Soil properties and metal accumulation by earthworms in the Siena urban area (Italy). Appl Soil Ecol 77:9–17

    Article  Google Scholar 

  • Ndegwa PM, Thompson SA (2001) Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresour Technol 76(2):107–112

    Article  CAS  PubMed  Google Scholar 

  • Nie E, Wang D, Yang M, Luo X, Fang C, Yang X, Zheng Z (2015) Tower bio-vermifilter system for rural wastewater treatment: bench-scale, pilot-scale, and engineering applications. Int J Environ Sci Technol 12(3):1053–1064

    Article  CAS  Google Scholar 

  • Nigussie A, Kuyper TW, Bruun S, de Neergaard A (2016) Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J Clean Prod 139:429–439. https://doi.org/10.1016/j.jclepro.2016.08.058

    Article  CAS  Google Scholar 

  • Olivares FL, Aguiar NO, Rosa CC, Canellas LP (2015) Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci Hortic 183:100–108

    Article  Google Scholar 

  • Olle M (2019) Review: vermicomposting, its importance and benefit in agriculture. J Agric Sci 30(2):93–98

    Google Scholar 

  • Palaniappan S, Alagappan M, Ramesh R (2017) Influence of aeration on vermicomposting of pre-processed vegetable waste. Indian J Sci Technol 10:12

    Article  CAS  Google Scholar 

  • Palashikar G, Ranade A, Veerapapullai S (2016) A brief review on emission of gaseous ammonia from composting of various waste materials. Int J Pharm Sci Rev Res 38(2):97–101

    CAS  Google Scholar 

  • Paoletti MG (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74(1–3):137–155

    Article  Google Scholar 

  • Parolini M, Ganzaroli A, Bacenetti J (2020) Earthworm as an alternative protein source in poultry and fish farming: current applications and future perspectives. Sci Total Environ 734:139460

    Article  CAS  PubMed  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springer plus 1:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérès G, Vandenbulcke F, Guernion M, Hedde M, Beguiristain T, Douay F, Cluzeau D (2011) Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France). Pedobiologia 54:77–87

    Article  Google Scholar 

  • Priyadarshini P, Abhilash PC (2020) Circular economy practices within energy and waste management sectors of India: a meta-analysis. Bioresour Technol 304:123018

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar K, Karmegam N (2010) Earthworm casts as an alternate carrier material for biofertilizers: assessment of endurance and viability of Azotobacter chroococcum, Bacillus megaterium and Rhizobium leguminosarum. Sci Hortic 124(2):286–289

    Article  Google Scholar 

  • Rajkhowa DJ, Bhattacharyya PN, Sarma AK, Mahanta K (2015) Diversity and distribution of earthworms in different soil habitats of Assam, north-east India, an Indo-Burma biodiversity hotspot. Proc Natl Acad Sci India Sect B Biol Sci 85(2):389–396

    Article  Google Scholar 

  • Rakkini VM, Vincent S, Kumar AS, Baskar K (2017) An overview: organic waste management by earthworm. Civ Eng Environ Syst 3(1):13–17

    Google Scholar 

  • Rao MS, Kamalnath M, Umamaheswari R, Rajinikanth R, Prabu P, Priti K (2017) Bacillus subtilis IIHR BS2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Sci Hortic 218:56–62

    Article  Google Scholar 

  • Reinecke AJ, Venter JM (1987) Moisture preferences, growth and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biol Fertil Soils 3(1):135–141

    Google Scholar 

  • Reinecke AJ, Viljoen SA, Saayman RJ (1992) The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia fetida (Oligochaeta) for vermicomposting in Southern Africa in terms of their temperature requirements. Soil Biol Biochem 24(12):1295–1307

    Article  Google Scholar 

  • Richardson JB, Görres JH, Jackson BP, Friedland AJ (2015) Trace metals and metalloids in forest soils and exotic earthworms in northern New England, USA. Soil Biol Biochem 85:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM (2014) Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Appl Soil Ecol 79:10–25

    Article  Google Scholar 

  • Rüdisser J, Tasser E, Peham T, Meyer E, Tappeiner U (2021) Hidden engineers and service providers: earthworms in agricultural land-use types of South Tyrol, Italy. Sustainability 13(1):312

    Article  Google Scholar 

  • Samal S, Mishra CSK, Sahoo S (2019) Setal-epidermal, muscular and enzymatic anomalies induced by certain agrochemicals in the earthworm Eudrilus eugeniae (Kinberg). Environ Sci Pollut Res 26(8):8039–8049

    Article  CAS  Google Scholar 

  • Santos A, Bustamante MA, Tortosa G, Moral R, Bernal MP (2016) Gaseous emissions and process development during composting of pig slurry: the influence of the proportion of cotton gin waste. J Clean Prod 112:81–90. https://doi.org/10.1016/j.jclepro.2015.08.084

    Article  CAS  Google Scholar 

  • Sarker S, Mafi AH, Sarker NC, Momotaz R, Shompa BN, Aminuzzaman FM (2020) Vermicompost-enriched substrate improves the production of milky mushroom (Calocybe indica). AJAHR 7(1):38–49

    Article  Google Scholar 

  • Senthilkumar PL, Murugappan A, Balaji K, Kavimani T (2016) An experimental study to assess the effect of aeration in substrate depth of process. Int J Appl Eng Res 11(3):124–137

    Google Scholar 

  • Shanthi NR, Bhoyar RV, Bhide AD (1993) Vermicomposting of vegetable waste. Compost Sci Util 1(4):27–30

    Article  Google Scholar 

  • Sharma K, Garg VK (2017) Vermicomposting: a green technology for organic waste management. In: Singhania RR, Agarwal RA, Kumar PR, Sukumaran RK (eds) Waste to wealth. Springer, Singapore, pp 199–235

    Google Scholar 

  • Sharma K, Garg VK (2018) Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Savingy). Bioresour Technol 250:708–715

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Garg VK (2019) Vermicomposting of waste: a zero-waste approach for waste management. Sustainable resource recovery and zero waste approaches. Elsevier, Amsterdam, pp 133–164

    Google Scholar 

  • Sharma S, Pradhan K, Satya S, Vasudevan P (2005) Potentiality of earthworm for waste management and in other uses- a review. Am J Sci 1(1):4–16

    Google Scholar 

  • Sharma S, Kumar A, Singh AP, Vasudevan P (2009) Earthworms and vermitechnology-a review. Dyn Soil Dyn Plant 3(2):1–12

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer plus 2(1):1–14

    Article  CAS  Google Scholar 

  • Shi Z, Wang C, Zhao Y (2020) Effects of surfactants on the fractionation, vermiaccumulation, and removal of fluoranthene by earthworms in soil. Chemosphere 250:126332

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh GS (2017) Vermicomposting: a sustainable tool for environmental equilibria. Manag Environ Qual 27:23–40

    Article  Google Scholar 

  • Singh A, Karmegam N, Singh GS, Bhadauria T, Chang SW, Kumar M, Sudhakar AS, Arunachalam KD, Biruntha M, Ravindran B (2020) Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environ Geochem Health 42:1617–1642

    Article  CAS  PubMed  Google Scholar 

  • Sinha RK, Herat S, Agarwal S, Asadi R, Carretero E (2002) Vermicumture and wastes management: study of action of earthworms Eissenia foetida, Eudrilus eugunae and Perionyx excavatus on biodegradation of some community wastes in India and Australia. Environmentalist 22(3):261–268

    Article  Google Scholar 

  • Sinha RK, Bharambe G, Chaudhari U (2008) Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist 28(4):409–420

    Article  Google Scholar 

  • Sinkakarimi MH, Solgi E, Hosseinzadeh-Colagar A (2020) Interspecific differences in toxicological response and subcellular partitioning of cadmium and lead in three earthworm species. Chemosphere 238:124595

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar S, Kavitha V, Rajeshewarisivaraj PD, Subburam V (2002) Effect of cadmium and mercury on the survival morphology and burrowing behaviour of the earthworm Lamibito mauritii (Kinberg). Indian J Environ Prot 23:792–799

    Google Scholar 

  • Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M (2019) Phytoremediation efficacy assessment of polycyclic aromatic hydrocarbons contaminated soils using garden pea (Pisum sativum) and earthworms (Eisenia fetida). Chemosphere 229:227–235

    Article  CAS  PubMed  Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil? A review. Environ Pollut 157:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39(1):151–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava V, Vaish B, Singh RP, Singh P (2020) An insight to municipal solid waste management of Varanasi city, India, and appraisal of vermicomposting as its efficient management approach. Environ Monit Assess 192(3):1–23

    Article  CAS  Google Scholar 

  • Sun H, Li J, Wang C, Wang L, Wang Y (2011) Enhanced microbial removal of pyrene in soils in the presence of earthworms. Soil Sediment Contam 20(6):617–630

    Article  CAS  Google Scholar 

  • Sun M, Chao H, Zheng X, Deng S, Ye M, Hu F (2020) Ecological role of earthworm intestinal bacteria in terrestrial environments: a review. Sci Total Environ 740:140008

    Article  CAS  PubMed  Google Scholar 

  • Suthar S (2007) Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresour Technol 98:1608–1614

    Article  CAS  PubMed  Google Scholar 

  • Suthar S (2008) Metal remediation from partially composted distillery sludge using composting earthworm Eisenia fetida. Environ Monit Assess 10:1099–1106

    Article  CAS  Google Scholar 

  • Thiruneelakandan R, Subbulakshmi G (2014) Recuperating waste into valuable organic manure using” environment’s Plowman. Biosci Biotechnol Res Asia 11(2):1019–1023

    Article  Google Scholar 

  • UNEP (2021) Solid waste management. UN Environment Programme. https://www.unep.org/explore-topics/resource-efficiency/what-we-do/cites/solid-waste-management. Accessed 1 Aug 2021

  • Usmani Z, Kumar V, Gupta P, Gupta G, Rani R, Chandra A (2019) Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Sci Rep 9(1):1–16

    Article  CAS  Google Scholar 

  • Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, Siddiqui MH, Brtnicky M, Hammerschmiedt T, Datta R (2020) Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture 10(8):334

    Article  CAS  Google Scholar 

  • Wang Y, Han W, Wang X, Chen H, Zhu F, Wang X, Lei C (2017) Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour Technol 245:411–418

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Liu Z, Xu Y, Li D, Li M (2012) Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicol Environ Saf 81:122–126

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Chen C, Wang G, Xiong B, Zhou W, Xue F (2020) Mechanism underlying earthworm on the remediation of cadmium-contaminated soil. Sci Total Environ 728:138904

    Article  CAS  PubMed  Google Scholar 

  • Yuvaraj A, Karmegam N, Thangaraj R (2018) Vermistabilization of paper mill sludge by an epigeic earthworm Perionyx excavatus: mitigation strategies for sustainable environmental management. Ecol Eng 120:187–197

    Article  Google Scholar 

  • Zaltauskaite J, Sodiene I (2014) Effects of cadmium and lead on the life-cycle parameters of juvenile earthworm Eisenia fetida. Ecotoxicol Environ Saf 103:9–16

    Article  CAS  PubMed  Google Scholar 

  • Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y (2020) Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: a critical review of research progress and prospects. Sci Total Environ 740:140145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Department of Biotechnology (DBT), Government of India, through the project “Survey on earthworm resource in organic waste, forest, agro-ecosystem and their role in waste management and nutrient dynamics in Northeast India (Tripura, Nagaland) and Uttarakhand (grant number BT/PR24972/NER/95/932/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Kakati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lirikum, Kakati, L.N., Thyug, L. et al. Vermicomposting: an eco-friendly approach for waste management and nutrient enhancement. Trop Ecol 63, 325–337 (2022). https://doi.org/10.1007/s42965-021-00212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-021-00212-y

Keywords

Navigation