Skip to main content
Log in

A general panel break test based on the self-normalization method

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

We propose new break tests for parameters such as mean, variance, quantile and others of panel data sets, in a general setup based on the self-normalization method. The self-normalization tests show much better size than existing tests, resolving their over-size problem for panels with serial dependence, cross-sectional dependence, conditional heteroscedasticity and/or N relative larger than T, which is demonstrated theoretically by a nuisance parameter free limiting null distribution and experimentally by very stable finite sample sizes. The proposed test is also implemented much more easily than the existing tests in that the proposed test needs no bandwidth selection for the long-run variance estimation and is computed very simply. Applications of the self-normalization test to the financial stock return and realized volatility indicate more toward absence of breaks of mean and/or variance than the existing tests which neglect cross-sectional correlation and other features apparent in the data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, D. W. K. (1991). Heteroscedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, 817–854.

    Article  MathSciNet  Google Scholar 

  2. Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics, 157, 78–92.

    Article  MathSciNet  Google Scholar 

  3. Bai, J., & Ng, S. (2004). A PANIC attack on unit roots and cointegration. Econometrica, 72, 1127–1177.

    Article  MathSciNet  Google Scholar 

  4. Betken, A. (2016). Testing for change-points in long-range dependent time series by means of a self-normalized Wilcoxon test. Journal of Time Series Analysis, 37, 785–809.

    Article  MathSciNet  Google Scholar 

  5. Bekaert, G., Ehrmann, M., Fratzscher, M., & Mehl, A. (2014). The global crisis and equity market contagion. The Journal of Finance, 69, 2597–2649.

    Article  Google Scholar 

  6. Chang, J., Zheng, C., Zhou, W., & Zhou, W. (2017). Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity. Biometrics, 73, 1300–1310.

    Article  MathSciNet  Google Scholar 

  7. Choi, J. E., & Shin, D. W. (2019). Moving block bootstrapping for a CUSUM test for correlation change. Computational Statistics and Data Analysis, 135, 95–106.

    Article  MathSciNet  Google Scholar 

  8. Choi, J. E., & Shin, D. W. (2020). A self-normalization test for correlation change. Economics Letters, 193, 108363.

  9. Choi, J. & Shin, D.W. (2021). Subsample scan test for multiple breaks based on self-normalization (unpublished manuscript).

  10. Crainiceanu, C. M., & Vogelsang, T. J. (2007). Spectral density bandwidth choice: Source of nonmonotonic power for tests of a mean shift in a time series. Journal of Statistical Computation and Simulation, 77, 457–476.

    Article  MathSciNet  Google Scholar 

  11. Demetrescu, M., & Hanck, C. (2013). Nonlinear IV panel unit root testing under structural breaks in the error variance. Statistical Papers, 54, 1043–1066.

    Article  MathSciNet  Google Scholar 

  12. Fernandez, C., & Steel, M. F. J. (1998). On bayesian modeling of fat tails and skewness, 93, 359–371.

    Google Scholar 

  13. Hwang, E. J., & Shin, D. W. (2017). Stationary bootstrapping for common mean change detection in cross-sectionally dependent panels. Metrika, 80, 767–787.

    Article  MathSciNet  Google Scholar 

  14. Horvath, L., & Huskova, M. (2012). Change-point detection in panel data. Journal of Time Series Analysis, 33, 631–648.

    Article  MathSciNet  Google Scholar 

  15. Kenourgios, D., & Dimitriou, D. (2015). Contagion of the global financial crisis and the real economy: a regional analysis. Economic modelling, 44, 283–293.

    Article  Google Scholar 

  16. Kiefer, N. M., Vogelsang, T. J., & Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica, 68, 695–714.

    Article  MathSciNet  Google Scholar 

  17. Li, F., Tian, Z., Xiao, Y., & Chen, Z. (2015). Variance change-point detection in panel data models. Economics Letters, 126, 140–143.

    Article  MathSciNet  Google Scholar 

  18. Lobato, I. N. (2001). Testing that a dependent process is uncorrelated. Journal of the American Statistical Association, 96, 1066–1076.

    Article  MathSciNet  Google Scholar 

  19. Phillips, P. C. B., & Solo, V. (1992). Asymptotics for linear processes. The Annals of Statistics, 20, 971–1001.

    Article  MathSciNet  Google Scholar 

  20. Politis, D. N., & White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econometric Reviews, 23, 53–70.

    Article  MathSciNet  Google Scholar 

  21. Sharipov, O., Tewes, J., & Wendler, M. (2016). Sequential block bootstrap in a Hilbert space with application to change point analysis. The Canadian Journal of Statistics, 44, 300–322.

    Article  MathSciNet  Google Scholar 

  22. Shao, X., & Zhang, X. (2010). Testing for change points in time series. Journal of the American Statistical Association, 105, 1228–1240.

    Article  MathSciNet  Google Scholar 

  23. Shi, Y. (2015). Testing change in volatility using panel data. Economics Letters, 134, 107–110.

    Article  MathSciNet  Google Scholar 

  24. Shin, D. W., & Hwang, E. J. (2017). A CUSUM test for panel mean change detection. Journal of the Korean Statistical Society, 46, 70–77.

    Article  MathSciNet  Google Scholar 

  25. Vogelsang, T. J. (1999). Sources of nonmonotonic power when testing for a shift in mean of a dynamic time series. Journal of Econometrics, 88, 283–299.

    Article  Google Scholar 

  26. Zhang, T., & Lavitas, L. (2018). Unsupervised self-normal change-point testing for time series. Journal of the American Statistical Association, 113, 637–648.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful of two referees whose comments improved the paper. This study was supported by grants from the National Research Foundation of Korea (2021R1F1A1059212) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A1A11051177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wan Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Proofs

Proof of Theorem 3.2

The result is straightforwardly derived by combining delta method and the invariance principle of \({\hat{\Theta }}_{1,T}\) in Assumption 3.1. \(\square\)

Proof of Theorem 3.3

We get the desired result by showing

$$\begin{aligned}&\sqrt{T} ({\hat{\xi }}_{1,[Tz]} - {\hat{\xi }}_{[Tz]+1,T}) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega (\frac{1}{z} + \frac{1}{1-z}) B^0(z), \end{aligned}$$
(12)
$$\begin{aligned}&\frac{1}{T} \sum _{s=1}^{[Tz]} \{\sqrt{T} \frac{s}{T} ({\hat{\xi }}_{1,s} -{\hat{\xi }}_{1,[Tz]})\}^2 {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega ^2 \int _0^z [B^0(u) - \frac{u}{z} B^0(1)]^2 du, \end{aligned}$$
(13)
$$\begin{aligned}&\frac{1}{T} \sum _{s=[Tz]+1}^T \{\sqrt{T}(1-\frac{s}{T})({\hat{\xi }}_{s,T}\nonumber \\&\quad - {\hat{\xi }}_{[Tz]+1,T})\}^2 {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega ^2\int _z^1 [B(1)-B(u) - \frac{1-u}{1-z} (B(1) - B(z))]^2) du. \end{aligned}$$
(14)

We first show (12). By Assumption 3.1, we have

$$\begin{aligned} -\sqrt{T}(1-z)({\hat{\xi }}_{[Tz]+1,T} - {\hat{\xi }}_{1,T}) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega B^0(z). \end{aligned}$$
(15)

Accordingly, by applying the continuous mapping theorem, we obtain (12) from

$$\begin{aligned} \begin{aligned}&\sqrt{T}({\hat{\xi }}_{1,[Tz]} - {\hat{\xi }}_{[Tz]+1,T}) = \sqrt{T}({\hat{\xi }}_{1,[Tz]}-{\hat{\xi }}_{1,T}\\&\quad +{\hat{\xi }}_{1,T}-{\hat{\xi }}_{[Tz]+1,T} ) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega \{\frac{1}{z} B^0(z) + \frac{1}{(1-z)} B^0(z)\}. \end{aligned} \end{aligned}$$

Similarly, the results (13), (14) are attained by combining Lemma 3.2, (15),

$$\begin{aligned}&\frac{1}{T} \sum _{s=1}^{[Tz]} \{\sqrt{T}\frac{s}{T} ({\hat{\xi }}_{1,s} - {\hat{\xi }}_{1,[Tz]})\}^2 = \frac{1}{T} \sum _{s=1}^{[Tz]} \{ \sqrt{T} \frac{s}{T} ({\hat{\xi }}_{1,s} - {\hat{\xi }}_{1,T}\\&\quad + {\hat{\xi }}_{1,T} - {\hat{\xi }}_{1,[Tz]}) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \int _0^z [B^0(u) - \frac{u}{z}B^0(z)]^2 du\end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\frac{1}{T} \sum _{s=[Tz]+1}^T \{ \sqrt{T}(1-\frac{s}{T})({\hat{\xi }}_{s,T} - {\hat{\xi }}_{[Tz]+1,T})\}^2\\&\quad = \frac{1}{T} \sum _{s=[Tz]+1}^T \{ \sqrt{T}(1-\frac{s}{T})({\hat{\xi }}_{s,T} - {\hat{\xi }}_{1,T} + {\hat{\xi }}_{1,T} - {\hat{\xi }}_{[Tz]+1,T}) \}^2 \\&\quad {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \int _{z}^1 [B(1)- B(u) - \frac{1-u}{1-z}(B(1)-B(z))]^2 du. \end{aligned} \end{aligned}$$

\(\square\)

Proof of Theorem 3.8

We get the result by showing

$$\begin{aligned} \sup _{z \in [0,1]} |L_{N,T} (z)| {{\mathop {\longrightarrow }\limits ^{\mathrm{p}}} }\infty . \end{aligned}$$
(16)

It sufficies to show, for \(\tau /T \rightarrow z_0 \in (0,1)\),

$$\begin{aligned} \begin{aligned} \sup _{z \in [0,1]}&L_{N,T} (z) \ge L_{N,T} (z_0)\\ =&\frac{[\sqrt{T} z_0 (1-z_0) \{ \sum _{i=1}^N {\hat{\lambda }}_i^{-1}(W({\hat{F}}_{i,1,[Tz_0]}) - W({\hat{F}}_{i, [Tz_0]+1, T}))\}]^2}{\frac{1}{T} \sum _{s= 1}^{[Tz_0]} [\frac{s}{\sqrt{T}} \{ \sum _{i=1}^N {\hat{\lambda }}_i^{-1}( W({\hat{F}}_{i,1,s}) - W({\hat{F}}_{i,1,[Tz_0]}))\}]^2 + \frac{1}{T}\sum _{s= [Tz_0]+1}^T [\frac{T-s}{\sqrt{T}} \{\sum _{i=1}^N {\hat{\lambda }}_i^{-1}(W({\hat{F}}_{i,s,T}) - W({\hat{F}}_{i,[Tz_0]+1,T}))\}]^2}\\ =&\frac{D_1^2(z_0)}{D_2(z_0) + D_3(z_0)} {{\mathop {\longrightarrow }\limits ^{\mathrm{p}}} }\infty . \end{aligned} \end{aligned}$$

Therefore, (16) can be obtained by showing, as \(T\rightarrow \infty\), for fixed N,

$$\begin{aligned}\text {(i)}~ D_1(z_0) \rightarrow \infty , ~\text {(ii)}~ D_2(z_0) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} d_2, ~\text {(iii)}~ D_3(z_0) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} d_3\end{aligned}$$

for some random variables \(d_2\) and \(d_3\).

We first show (i). From (5), we have

$$\begin{aligned} \begin{aligned}&D_1(z_0) = \sqrt{T} z_0(1-z_0) \{\sum _{i=1}^N {\hat{\lambda }}^{-1}_i (\frac{1}{[Tz_0]} \sum _{t=1}^{[Tz]} (W(F_{it}) + IF(Y_{it}; F_{it})) + R_{i,1,[Tz]} \\&\quad - \frac{1}{T-[Tz_0]} \sum _{t=[Tz_0]+1}^T (W(F_{it}) + IF(Y_{it}; F_{it})) + R_{i,[Tz_0]+1, T})\}. \end{aligned} \end{aligned}$$
(17)

Note that, combining Assumption 3.7 and the delta method, \(IF(Y_{it}; F_{it})\) satisfies invariance principle

$$\begin{aligned}&\sum _{i=1}^N \frac{1}{\sqrt{T}} \sum _{t=1}^{[Tz]} IF(Y_{it}; F_{it}) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega _{IF} B(z),~~ \nonumber \\&\quad \sum _{i=1}^N \frac{1}{\sqrt{T}} \sum _{t=[Tz]+1}^{T} IF(Y_{it}; F_{it}) {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega _{IF}(B(1)-B(z)), \end{aligned}$$
(18)

and, by Assumption 3.7, \(R_{i,1,[Tz]}\) and \(R_{i,[Tz]+1, T}\) are uniformly negligible. Then, it is enough to show

$$\begin{aligned} D_{11}(z_0) = \sqrt{T}z_0(1-z_0) \{ \sum _{i=1}^N {\hat{\lambda }}_i^{-1} (\frac{1}{[Tz_0]} \sum _{t=1}^{[Tz_0]} W(F_{it}) - \frac{1}{T-[Tz_0]} \sum _{t=[Tz_0]+1}^T W(F_{it}))\} \rightarrow \infty . \end{aligned}$$
(19)

We have

$$\begin{aligned} \begin{aligned} D_{11}(z_0) =&\sqrt{T}z_0(1-z_0)\{ \sum _{i=1}^N {\hat{\lambda }}_i^{-1} ( \frac{1}{[Tz_0]} \sum _{t=1}^{[Tz_0]} (W(F_i) +\delta _i I(t> \tau ))\\&\quad - \frac{1}{T-[Tz_0]} \sum _{t=[Tz_0]+1}^T (W(F_i) +\delta _i I(t > \tau ))) \}\\ =&\sqrt{T} z_0 (1-z_0) \{\sum _{i=1}^N \delta _iA_{Tz_0}/{\hat{\lambda }}_i\} , \end{aligned} \end{aligned}$$

where \(A_{Tz } = \frac{\sum _{t=1}^{[Tz_0]} I(t> [Tz])}{[Tz_0]} - \frac{\sum _{t=[Tz_0]+1}^T I(t>[Tz])}{T-[Tz_0]},\) and, since \(A_{Tz_0}{{\mathop {\longrightarrow }\limits ^{\mathrm{p}}} }-1\) and \(\sum _{i=1}^N \delta _i/{\lambda }_i \ne 0\), we get (i).

Similarly to (17)-(19), (ii) is derived by observing

$$\begin{aligned} \begin{aligned} D_2(z_0)&= \frac{1}{T} \sum _{s=1}^{[Tz_0]} [ \frac{s}{\sqrt{T}} \{ \sum _{i=1}^N {\hat{\lambda }}_i^{-1} ( \frac{1}{s} \sum _{t=1}^s IF(Y_{it}; F_{it}) + R_{i,1,s}\\&\quad - \frac{1}{[Tz_0]} \sum _{t=1}^{[Tz_0]} IF(Y_{it}; F_{it}) + R_{i,1,[Tz_0]})\}]^2 {\mathop {\longrightarrow }\limits ^{\mathrm{d}}} \omega _{IF}^2 \int _0^{z_0} [B(u) - \frac{u}{z_0} B(z_0)]^2 du, \end{aligned} \end{aligned}$$

and (iii) is obtained similarly. \(\square\)

1.2 A.2 Bandwidth for long-run variance estimator and block length for moving block bootstrapping

We specify the bandwidth for the long-run variance estimator and the block length for the moving block bootstrapping, which are required by the existing tests considered in Sect. 5. The long run variance estimator for the tests \(H_{opt}\), B, \(B^*\) for panel mean break is considered with the optimal bandwidth of Andrews (1991) \(l= 1.1447\{4T{\hat{\rho }}^2/(1-{\hat{\rho }}^2)^2\}^{1/3},\) where \({\hat{\rho }}\) is the estimated AR(1) coefficient in the AR(1) fitting to \(\sum _{i=1}^N Y_{i,t},~t =1, \ldots , T\). For the test H, we consider the bandwidth \(l = 3\), which were considered by Horvath and Huskova (2012). The tests U, W for the panel variance break use the bandwidth \(l =3, T^{1/3}\), respectively, which were considered by Shi (2015)and Li et al. (2015).

The block length parameter \(L_{MB}\) of the bootstrap tests \(B^*\), \(J^*\) is considered to be the optimal block length parameters of Politis and White (2004, Section 3.2),

$$\begin{aligned}L_{MB} = [2{\hat{G}}^2T/(\frac{4}{3}{\hat{g}}^2(0))]^{1/3}, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}{\hat{G}} =&\sum _{ k=-M}^M \lambda (k/M) |k| {\hat{R}}(k),~~{\hat{g}}(r) = \sum _{ k=-M}^M \lambda (k/M) {\hat{R}}(k) cos(rk),~~ M = logT, \\ \lambda (y)&= 1~ \text { if } |y|<\frac{1}{2},~~\lambda (y)=2(1-|y|)~ \text { if }\frac{1}{2} \le |y| \le 1,~~\\ {\hat{R}}(k)&=\frac{1}{T}\sum _{t=1}^{T-|k|}(R_t-{\bar{R}}_T)(R_{t+|k|}-{\bar{R}}_T),\\ R_t =&\sum _{i=1}^N ({E}_{it} - {\bar{E}}_i),~{E}_{it}=(\frac{Y_{it}-{\bar{Y}}_{i}}{sd_{i}})^2,~~{\bar{E}}_i = \frac{1}{T}\sum _{t=1}^T E_{it} ~~{\bar{R}}_T = \frac{1}{T} \sum _{t=1}^T R_t, \end{aligned} \end{aligned}$$

and \(sd_{i}^2\) is the sample variance of \(Y_{i,t},t=1,\ldots ,T\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JE., Shin, D.W. A general panel break test based on the self-normalization method. J. Korean Stat. Soc. 50, 654–680 (2021). https://doi.org/10.1007/s42952-021-00125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-021-00125-5

Keywords

Navigation