Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-22T13:19:24.563Z Has data issue: false hasContentIssue false

The Composition and Growth Mechanism of Coexisting 4M2 and 4A8 Biotite Polytypes from Rhyolite of Long Valley Caldera, California

Published online by Cambridge University Press:  01 January 2024

Jiaxin Xi
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Yiping Yang
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
Lingya Ma*
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Hongping He
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Huifang Xu
Affiliation:
Department of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, USA
Jianxi Zhu
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China
Jingming Wei
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Polytypism is common in micas, and the frequency of polytype occurrence is believed to be related closely to the crystallization conditions and chemical compositions of the corresponding fluids and melts. Coexisting multiple standard and complex/disordered polytypes in igneous rocks generally reflect a complicated magma evolution history. The purpose of the current study was to clarify the origin of coexisting biotite polytypes and their growth mechanism. Micro-X-ray diffraction (μXRD) and transmission electron microscopy (TEM) were used to investigate Fe-rich biotite phenocrysts in rhyolite from the Long Valley Caldera, California, USA. The μXRD analyses characterized various polytypes, and TEM observations revealed that common polytypes (e.g. 1M, 2M1, and 3T) and rare polytypes (e.g. 4M2 and 4A8) coexist within biotite monocrystals. The two 4-layer polytypes of Fe-rich biotite, 4M2 and 4A8, were identified via selected-area electron diffraction (SAED) and high-resolution scanning transmission electron microscopy (HRSTEM) at the atomic resolution, with unique stacking sequences ([0222] for 4M2 and [002] for 4A8). Energy-dispersive X-ray spectroscopy (EDS) results showed differences in their chemical compositions, especially Fe and K. The 4A8 polytype is reported for the first time. The present study suggested that environmental changes, such as rapid cooling and inhomogeneous compositional distribution, led to chemical and structural oscillations and complex nucleation of the two 4-layer polytypes. Screw dislocations producing spiral growth enhance polytype stability and form ordered long-period/complex polytypes. These results are useful to understand the origin of long-period/complex polytypes and the intergrowths of diverse polytypes formed in non-equilibrium crystallization environments.

Type
Original Paper
Copyright
Copyright © The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W. (1984). Review of cation ordering in micas. Clays and Clay Minerals, 32, 8192.CrossRefGoogle Scholar
Banfield, J. F., & Murakami, T. (1998). Atomic-resolution electron microscope evidence for the mechanism by which chlorite weathers to 1: 1 semi-regular chlorite-vermiculite. American Mineralogist, 83, 348357.CrossRefGoogle Scholar
Baronnet, A. (1992). Polytypism and stacking disorder. Minerals and Reactions at the Atomic Scale, 27, 231288.CrossRefGoogle Scholar
Baronnet, A., & Amouric, M. (1986). Growth spirals and complex polytypism in micas. II. occurrence frequencies in synthetic species. Bulletin de Mineralogie, 109, 489508.CrossRefGoogle Scholar
Baronnet, A., & Kang, Z. C. (1989). About the origin of mica polytypes. Phase Transitions, 16, 477493.CrossRefGoogle Scholar
Baronnet, A., Amouric, M., & Chabot, B. (1976). Mécanismes de croissance, polytypisme et polymorphisme de la muscovite hydroxylée synthétique. Journal of Crystal Growth, 32, 3759.CrossRefGoogle Scholar
Baronnet, A., Nitsche, S., & Kang, Z. C. (1993). Layer stacking microstructures in a biotite single crystal: A combined HRTEM–AEM study. Phase Transitions, 143, 107128.CrossRefGoogle Scholar
Bigi, S., & Brigatti, M. F. (1994). Crystal chemistry and microstructures of plutonic biotite. American Mineralogist, 79, 6372.Google Scholar
Bozhilov, K. N., Xu, Z., Dobrzhinetskaya, L. F., Jin, Z. M., & Green, H. W. (2009). Cation-deficient phlogopitic mica exsolution in diopside from garnet peridotite in SuLu, China. Lithos, 109, 304313.CrossRefGoogle Scholar
Brigatti, M. F., & Guggenheim, S. (2002). Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Reviews in Mineralogy and Geochemistry, 46, 197.CrossRefGoogle Scholar
Brigatti, M. F., Guidotti, C. V., Malferrari, D., & Sassi, F. P. (2008). Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine. American Mineralogist, 93, 396408.CrossRefGoogle Scholar
Ferraris, G., & Ivaldi, G. (2002). Structural features of micas. Reviews in Mineralogy and Geochemistry, 46, 117153.CrossRefGoogle Scholar
Ferraris, G., Gula, A., Ivaldi, G., Nespolo, M., Sokolova, E., Uvarova, Y., & Khomyakov, P. (2001). First structure determination of an MDO-2O mica polytype associated with a 1M polytype. European Journal of Mineralogy, 13, 10131023.CrossRefGoogle Scholar
Fregola, R. A., & Scandale, E. (2011). A 94-layer long-period mica polytype: A TEM study. American Mineralogist, 96, 172178.CrossRefGoogle Scholar
Fregola, R. A., Capitani, G., Scandale, E., & Ottolini, L. (2009). Chemical control of 3T stacking order in a Li-poor biotite mica. American Mineralogist, 94, 334344.CrossRefGoogle Scholar
Gilmer, G. H. (1977). Computer simulation of crystal growth. Journal of Crystal Growth, 42, 310.CrossRefGoogle Scholar
Guggenheim, S., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A., Eberl, D. D., Formoso, M. L., Galán, E., Merriman, R. J., Peacor, D. R., Stanjek, H., & Watanabe, T. (2002). Report of the association internationale pour l'étude des argiles (AIPEA) nomenclature committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “crystallinity index.” Clays and Clay Minerals, 50, 406409.CrossRefGoogle Scholar
Guinier, A., Bokij, G. B., Boll-Dornberger, K., Cowley, J. M., Jagodzinski, H., Krishna, P., Zvyagin, B. B., Cox, D. E., Goodman, P., Hahn, Th., Kuchitsu, K., & Abrahams, S. C. (1984). Nomenclature of polytype structures. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated, and Polytype Structures. Acta Crystallographica, A40, 399404.CrossRefGoogle Scholar
Güven, N., & Burnham, C. W. (1967). The crystal structure of 3T muscovite. Zeitschrift Für Kristallographie Crystalline Materials, 125, 163183.CrossRefGoogle Scholar
He, H. P., Yang, Y. P., Ma, L. Y., Su, X. L., Xian, H. Y., Zhu, J. X., Teng, H., & Guggenheim, S. (2021). Evidence for a two-stage particle attachment mechanism for phyllosilicate crystallization in geological processes. American Mineralogist, 106, 983993.CrossRefGoogle Scholar
Hooper, W. P., & Eloranta, E. W. (1986). Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measure-ments with radiosonde and kytoon. Journal of Climate and Applied Meteorology, 25, 9901001.2.0.CO;2>CrossRefGoogle Scholar
Iijima, S., & Buseck, P. R. (1978). Experimental study of disordered mica structures by high-resolution electron microscopy. Acta Crystallographica, A34, 709719.CrossRefGoogle Scholar
Kogure, T. (2002). Investigations of micas using advanced transmission electron microscopy. Reviews in Mineralogy and Geochemistry, 46, 281312.CrossRefGoogle Scholar
Kogure, T., & Banfield, J. F. (1998). Direct identification of the six polytypes of chlorite characterized by semi-random stacking. American Mineralogist, 83, 925930.CrossRefGoogle Scholar
Kogure, T., & Nespolo, M. (1999). TEM study of long-period mica polytypes: Determination of the stacking sequence of oxybiotite by means of atomic resolution images and Periodic Intensity Distribution (PID). Acta Crystallographica Section B - Structural Science, 55, 507516.CrossRefGoogle ScholarPubMed
Lacalamita, M., Mesto, E., Scordari, F., & Schingaro, E. (2012a). Chemical and structural study of 1M- and 2M 1 - phlogopites coexisting in the same Kasenyi kamafugitic rock (SW Uganda). Physics and Chemistry of Minerals, 39, 601611.CrossRefGoogle Scholar
Lacalamita, M., Scordari, F., Schingaro, E., & Mesto, E. (2012b). Crystal chemistry of trioctahedral micas - 2M 1 from Bunyaruguru (SW Uganda) kamafugite. American Mineralogist, 97, 430439.Google Scholar
Laurora, A., Brigatti, M. F., Mottana, A., Malferrari, D., & Caprilli, E. (2007). Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks: A case study from Mt. Sassetto (Tolfa district, Latium, central Italy). American Mineralogist, 92, 468480.CrossRefGoogle Scholar
Metz, J. M., & Mahood, G. A. (1991). Development of the long valley, California, magma chamber recorded in precaldera rhyolite lavas of glass mountain. Contributions to Mineralogy and Petrology, 106, 379397.CrossRefGoogle Scholar
Nespolo, M. (1999). Analysis of family reflections of OD mica polytypes, and its application to twin identification. Mineralogical Journal, 21, 5385.CrossRefGoogle Scholar
Nespolo, M. (2001). Perturbative theory of mica polytypism. Role of the M2 layer in the formation of inhomogeneous polytypes. Clays and Clay Minerals, 49, 123.CrossRefGoogle Scholar
Nespolo, M., & Ďurovič, S. (2002). Crystallographic basis of polytypism and twinning in micas. In Mottana, A., Sassi, F. P., & ThompsonGuggenheim, J. B. S. (Eds.), Micas: Crystal chemistry and metamorphic petrology (pp. 155279). Springer.CrossRefGoogle Scholar
Nespolo, M., Takeda, H., Kogure, T., & Ferraris, G. (1999). Periodic intensity distribution (PID) of mica polytypes: Symbolism, structural model orientation and axial settings. Acta Crystallographica Section A, 55, 659676.CrossRefGoogle ScholarPubMed
Pauling, L. (1930). The rotational motion of molecules in crystals. Physical Review, 36, 430443.CrossRefGoogle Scholar
Penn, R. L., & Banfield, J. F. (1998). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. American Mineralogist, 83, 10771082.CrossRefGoogle Scholar
Pennycook, S. J. (2002). Structure determination through Z-contrast microscopy. Advances in Imaging & Electron Physics, 123, 173206.CrossRefGoogle Scholar
Pignatelli, I., & Nespolo, M. (2011). 5M 3 ferriphlogopite from the Ruiz Peak (New Mexico, USA): First occurrence of a mica polytype with coexistence of M1- and M2- layers. European Journal of Mineralogy, 23, 703715.CrossRefGoogle Scholar
Pignatelli, I., Dusek, M., De Titta, G., & Nespolo, M. (2011). Structural modelling, refinement and possible formation mechanism of a 4M 3 non-MDO ferriphlogopite (Ruiz Peak volcano). European Journal of Mineralogy, 23, 7384.CrossRefGoogle Scholar
Pignatelli, I., Faure, F., & Mosser-Ruck, R. (2016). Self-mixing magma in the Ruiz Peak rhyodacite (New Mexico, USA): A mechanism explaining the formation of long period polytypes of mica. Lithos, 266, 332347.CrossRefGoogle Scholar
Ramsdell, L. S. (1947). Studies on silicon carbide. American Mineralogist, 32, 6482.Google Scholar
Ross, M., Takeda, H., & Wones, D. R. (1966). Mica polytypes: Systematic description and identification. Science, 151, 191193.CrossRefGoogle ScholarPubMed
Rule, A. C., Bailey, S. W., Livi, K. J., & Veblen, D. R. (1987). Complex stacking sequence in a lepidotite from Tørdal, Norway. American Mineralogist, 72, 11631169.Google Scholar
Smith, J. V., & Yoder, H. S. (1956). Experimental and theoretical studies of the mica polymorphs. Mineralogical Magazine, 31, 209235.CrossRefGoogle Scholar
Stöckhert, B. (1985). Compositional control on the polymorphism 2M 1 - 3T of phengitic white mica from high pressure parageneses of the Sesia Zone (lower Aosta valley, Western Alps; Italy). Contributions to Mineralogy and Petrology, 89, 5258.CrossRefGoogle Scholar
Stranski, I. N. (1928). Zur Theorie des Kristallwachstums. Zeitschrift Für Physikalische Chemie, 136, 259278.CrossRefGoogle Scholar
Sunagawa, I., Endo, Y., Daimon, N., & Tate, I. (1968). Nucleation, growth and polytypism of four-phlogopite from the vapour phase. Journal of Crystal Growth, 3, 751751.CrossRefGoogle Scholar
Takeda, H., & Donnay, J. (1965). A standardized Japanese nomenclature for crystal forms. Mineralogical Journal, 4, 291298.Google Scholar
Takeda, H., & Ross, M. (1975). Mica polytypism - dissimilarities in crystal-structure of coexisting 1M and 2M 1 biotite. American Mineralogist, 60, 10301040.Google Scholar
Takeda, H., & Ross, M. (1995). Mica polytypism: Identification and origin. American Mineralogist, 80, 715724.CrossRefGoogle Scholar
Tomisaka, T. (1958). On the chemical properties, optical properties and the structural types of some muscovites and phlogopites. Journal of the Mineralogical Society of Japan, 3, 710721.CrossRefGoogle Scholar
Tomisaka, T. (1962). Polytypes of the phlogopite-biotite series and their mutual relations. Journal of Mineralogy Petrology and Economic Geology, 47, 134143.Google Scholar
Vand, V., & Hanoka, J. I. (1967). Epitaxial theory of polytypism; observations on the growth of PbI2 crystals. Materials Research Bulletin, 2, 241251.CrossRefGoogle Scholar
Verma, A. R., & Krishna, P. (1966). Crystallography: Exploring Polytypism. (Book reviews: polymorphism and polytypism in crystals). Science, 154, 1316.Google Scholar
Wang, Y. F., & Xu, H. F. (2006). Geochemical chaos: Periodic and nonperiodic growth of mixed-layer phyllosilicates. Geochimica Et Cosmochimica Acta, 70, 19952005.CrossRefGoogle Scholar
Xu, H. F., & Veblen, D. R. (1995). Periodic and nonperiodic stacking in biotite from the Bingham Canyon porphyry copper deposit, Utah. Clays and Clay Minerals, 43, 159173.Google Scholar
Xu, H. F., Shen, Z., Konishi, H., & Luo, G. (2014). Crystal structure of Guinier-Preston zones in orthopyroxene: Z-contrast imaging and ab inito study. American Mineralogist, 99, 20432048.CrossRefGoogle Scholar
Xu, H. F., Shen, Z., & Konishi, H. (2015). Natural occurrence of monoclinic Fe3S4 nano-precipitates in pyrrhotite from the Sudbury ore deposit: A Z-contrast imaging and density functional theory study. Mineralogical Magazine, 79, 377385.CrossRefGoogle Scholar
Yoder, H. S., & Eugster, H. P. (1955). Synthetic and natural muscovites. Geochimica Et Cosmochimica Acta, 8, 225284.CrossRefGoogle Scholar
Zhukhlistov, A. P., Zvyagin, B. B., & Pavlishin, V. L. (1988). Biotite 4M with an inhomogeneous layer alternation. Zeitschrift fur Kristallographie, 185, 624.Google Scholar
Zvyagin, B. B. (1987). Polytypism in contemporary crystallography. Soviet Physics Crystallography, 32, 394399.Google Scholar
Zvyagin, B. B. (1997). Modular analysis of crystal structures. EMU Notes in Mineralogy, 1, 345372.Google Scholar
Supplementary material: File

Xi et al. supplementary material
Download undefined(File)
File 5.4 MB