Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-07T12:57:09.131Z Has data issue: false hasContentIssue false

Bionanocomposite Beads Based on Montmorillonite and Biopolymers as Potential Systems for Oral Release of Ciprofloxacin

Published online by Cambridge University Press:  01 January 2024

Mayara S. Leite
Affiliation:
Universidade Federal do Maranhão, Grupo de Pesquisa em Materiais Híbridos e Bionanocompósitos - Bionanos, DEQUI, 65080-805, São Luís, MA, Brazil
Welton C. Sodré
Affiliation:
Universidade Federal do Maranhão, Grupo de Pesquisa em Materiais Híbridos e Bionanocompósitos - Bionanos, DEQUI, 65080-805, São Luís, MA, Brazil
Lais R. de Lima
Affiliation:
Universidade Federal do Maranhão, Grupo de Pesquisa em Materiais Híbridos e Bionanocompósitos - Bionanos, DEQUI, 65080-805, São Luís, MA, Brazil
Vera R. L. Constantino
Affiliation:
Departamento de Química Fundamental, Universidade de São Paulo, Instituto de Química, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
Ana C. S. Alcântara*
Affiliation:
Universidade Federal do Maranhão, Grupo de Pesquisa em Materiais Híbridos e Bionanocompósitos - Bionanos, DEQUI, 65080-805, São Luís, MA, Brazil
*
*E-mail address of corresponding author: ana.alcantara@ufma.br

Abstract

The number of studies of controlled drug-release systems is growing constantly. Bionanocomposite materials which can be prepared from the combination of biopolymers with inorganic solids such as clay minerals offer interesting alternatives for use as drug-delivery systems. In the present study, new bionanocomposite drug-release systems were prepared from the intercalation of the antibiotic drug ciprofloxacin into montmorillonite using an ion-exchange reaction. In order to prepare more stable systems for oral ciprofloxacin release, this ciprofloxacin-clay intercalation compound was incorporated into i-carrageenan-gelatin biopolymer blend to produce bionanocomposite materials. Bionanocomposites of two distinct i-carrageenan and gelatin mass ratios were conformed as beads through an ionic gelification reaction with Ca2+ ions, and dried by freeze-drying where liquid nitrogen or conventional freezing was adopted in the freezing step. The resulting ciprofloxacin-clay hybrid was characterized by X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, solid state 13C Nuclear Magnetic Resonance (NMR), thermal analysis, and scanning electron microscopy (SEM). The montmorillonite-ciprofloxacin hybrid incorporated into the bionanocomposite beads was evaluated by in vitro release studies which showed a significant difference in the release profiles in the aqueous medium used to simulate the gastrointestinal tract, depending on the blend composition and the freezing method employed in the preparation of the beads. The results point to bionanocomposite systems based on ciprofloxacin-clay hybrids and biopolymers that may be used as devices in the biomedical area.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper belongs to a special issue on ‘Clay Minerals in Health Applications’

References

Abdel-Karim, A., El-Naggar, M. E., Radwan, E. K., Mohamed, I. M., Azaam, M., & Kenawy, E.-R. (2021). High-performance mixed-matrix membranes enabled by organically/inorganic modified montmorillonite for the treatment of hazardous textile wastewater. Chemical Engineering Journal, 405, 126964.CrossRefGoogle Scholar
Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, 36, 2236.CrossRefGoogle Scholar
Aguzzi, C., Cerezo, P., Sandri, G., Ferrari, F., Rossi, S., Bonferoni, C., Caramella, C., & Viseras, C. (2014). Intercalation of tetracycline into layered clay mineral material for drug delivery purposes. Materials Technology, 29, B96–B99 Taylor & Francis.CrossRefGoogle Scholar
Akrami-Hasan-Kohal, M., Ghorbani, M., Mahmoodzadeh, F., & Nikzad, B. (2020). Development of reinforced aldehyde-modified kappa-carrageenan/gelatin film by incorporation of halloysite nanotubes for biomedical applications. International Journal of Biological Macromolecules, 160, 669676.CrossRefGoogle ScholarPubMed
Alcântara, A. C. S., & Darder, M. (2018). Building up functional bionanocomposites from the assembly of clays and biopolymers. The Chemical Record, 18, 696712 John Wiley & Sons, Ltd.Google Scholar
Alcântara, A. C. S., Aranda, P., Darder, M., & Ruiz-Hitzky, E. (2010). Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. Journal of Materials Chemistry, 20, 94659504.CrossRefGoogle Scholar
Alcântara, A. C. S., Darder, M., Aranda, P., & Ruiz-hitzky, E. (2016). Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces. Beilstein Journal of Nanotechnology, 7, 17721782.CrossRefGoogle ScholarPubMed
Ashe, S., Behera, S., Dash, P., Nayak, D., & Nayak, B. (2020). Gelatin carrageenan sericin hydrogel composites improves cell viability of cryopreserved SaOS-2 cells. International Journal of Biological Macromolecules, 154, 606620.CrossRefGoogle ScholarPubMed
Bergaya, F., & Lagaly, G. (2006). Chapter 1 General introduction: clays, clay minerals, and clay science. In Bergaya, F., Theng, B. K. G., & Lagaly, G. (Eds.), Handbook of Clay Science (pp. 118). Elsevier.Google Scholar
Bertolino, V., Cavallaro, G., Lazzara, G., Merli, M., Milioto, S., Parisi, F., & Sciascia, L. (2016). Effect of the biopolymer charge and the nanoclay morphology on nanocomposite materials. Industrial & Engineering Chemistry Research, 55, 73737380 American Chemical Society.CrossRefGoogle Scholar
Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Structures and mineralogy of clay minerals. In Bergaya, F., Theng, B. K. G., & Lagaly, G. (Eds.), Handbook of Clay Science (pp. 1986). Elsevier.CrossRefGoogle Scholar
Cai, J., Han, X., Wang, X., & Meng, X. (2020). Atomic layer deposition of two-dimensional layered materials: processes, growth mechanisms, and characteristics. Matter, 2, 587630.CrossRefGoogle Scholar
Calabrese, I., Cavallaro, G., Scialabba, C., Licciardi, M., Merli, M., Sciascia, L., & Turco Liveri, M. L. (2013). Montmorillonite nanodevices for the colon metronidazole delivery. International Journal of Pharmaceutics, 457, 224236.CrossRefGoogle ScholarPubMed
Calabrese, I., Gelardi, G., Merli, M., Liveri, M. L. T., & Sciascia, L. (2017). Clay-biosurfactant materials as functional drug delivery systems: Slowing down effect in the in vitro release of cinnamic acid. Applied Clay Science, 135, 567574.CrossRefGoogle Scholar
Camara, M., Liao, H., Xu, J., Zhang, J., & Swai, R. (2019). Molecular dynamics study of the intercalation and conformational transition of poly (N-vinyl caprolactam), a thermosensitive polymer in hydrated Na-montmorillonite. Polymer, 179, 121718.CrossRefGoogle Scholar
Carazo, E., Borrego-Sánchez, A., Sánchez-Espejo, R., García-Villén, F., Cerezo, P., Aguzzi, C., & Viseras, C. (2018). Kinetic and thermodynamic assessment on isoniazid/montmorillonite adsorption. Applied Clay Science, 165, 8290.CrossRefGoogle Scholar
Chattah, A. K., Linck, Y. G., Monti, G. A., Levstein, P. R., Manzo, H., Breda, S. A., & Olivera, E. (2007). NMR and IR characterization of the aluminium complexes of norfloxacin and ciprofloxacin fluoroquinolones. Magnetic Resonance in Chemistry, 45, 850859.CrossRefGoogle ScholarPubMed
Cheng, C. J., & Jones, O. G. (2017). Stabilizing zein nanoparticle dispersions with ι-carrageenan. Food Hydrocolloids, 69, 2835.CrossRefGoogle Scholar
Cunha, V. R. R., De Souza, R. B., Da Fonseca Martins, A. M. C. R. P., Koh, I. H. J., & Constantino, V. R. L. (2016). Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: Histological and microcirculation evaluation. Scientific Reports, 6, 110.CrossRefGoogle ScholarPubMed
Darder, M., Aranda, P., Ferrer, M. L., Gutiérrez, M. C., del Monte, F., & Ruiz-Hitzky, E. (2011). Progress in bionanocomposite and bioinspired foams. Advanced Materials, 23, 52625267.CrossRefGoogle ScholarPubMed
El-Gamel, N. E. A., Hawash, M. F., & Fahmey, M. A. (2012). Structure characterization and spectroscopic investigation of ciprofloxacin drug. Journal of Thermal Analysis and Calorimetry, 108, 253262.CrossRefGoogle Scholar
García, M. C. (2018). 12 - Drug delivery systems based on nonimmunogenic biopolymers. In Parambath, A. (Ed.), Engineering of Biomaterials for Drug Delivery Systems (pp. 317344). Woodhead Publishing Series in Biomaterials. Woodhead Publishing.CrossRefGoogle Scholar
Gieseking, J. E. (1939). The mechanism of cation exchange in the montmorillonite-beidellite-nontronite type of clay minerals. Soil Science, 47, 114.CrossRefGoogle Scholar
Gómez-Mascaraque, L. G., Llavata-Cabrero, B., Martínez-Sanz, M., Fabra, M. J., & López-Rubio, A. (2018). Self-assembledgelatin-ι-carrageenan encapsulation structures for intestinal-targeted release applications. Journal of Colloid and Interface Science, 517, 113123.CrossRefGoogle ScholarPubMed
Gutiérrez, M. C., García-Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M. L., & del Monte, F. (2007). Poly(vinyl alcohol). scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17, 35053513.CrossRefGoogle Scholar
Kevadiya, B. D., Rajkumar, S., Bajaj, H. C., Chettiar, S. S., Gosai, K., Brahmbhatt, H., Bhatt, A. S., Barvaliya, Y. K., Dave, G. S., & Kothari, R. K. (2014). Biodegradable gelatin–ciprofloxacin–montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids and Surfaces B: Biointerfaces, 122, 175183.CrossRefGoogle ScholarPubMed
Khan, A. K., Saba, A. U., Nawazish, S., Akhtar, F., Rashid, R., Mir, S., Nasir, B., Iqbal, F., Afzal, S., Pervaiz, F., & Murtaza, G. (2017). Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxidative Medicine and Cellular Longevity, 2017, 113.Google Scholar
Kotal, M., & Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Science, 51, 127187.CrossRefGoogle Scholar
Lee, L., Zeng, C., Cao, X., Han, X., Shen, J., & Xu, G. (2005). Polymer nanocomposite foams. Composites Science and Technology, 65, 23442363.CrossRefGoogle Scholar
Lehn, J.-M., Alberti, G., & Bein, T. (1997). Comprehensive Supramolecular chemistry (Vol. 4). Pergamon Press, Oxford, UK.Google Scholar
Li, J.-R., Wang, Y.-X., Wang, X., Yuan, B., & Fu, M.-L. (2015). Intercalation and adsorption of ciprofloxacin by layered chalcogenides and kinetics study. Journal of Colloid and Interface Science, 453, 6978.CrossRefGoogle ScholarPubMed
Nahin, P. G. (1952). Infrared analysis of clays and related minerals. Clays and Clay Minerals, Bull, 169, Part III, 112118.CrossRefGoogle Scholar
Nascimento, G.M. (2021). Tanushree Choudhury (July 15th 2020). Clay Hybrid Materials, Clay Science and Technology, IntechOpen, https://doi.org/10.5772/intechopen.92529. Available from: https://www.intechopen.com/books/clay-science-and-technology/clay-hybrid-materials. Accessed in September 2021.Google Scholar
Nayak, P. L., & Sahoo, D. (2011). Chitosan-alginate composites blended with cloisite 30B as a novel drug delivery system for anticancer drug paclitaxel. International Journal of Plastics Technology, 15, 6881.CrossRefGoogle Scholar
Nouri, A., Tavakkoli Yaraki, M., Ghorbanpour, M., & Wang, S. (2018). Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. International Journal of Biological Macromolecules, 115, 227235.CrossRefGoogle ScholarPubMed
Oliveira, A. S., Alcântara, A. C. S., & Pergher, S. B. C. (2017). Bionanocomposite systems based on montmorillonite and biopolymers for the controlled release of olanzapine. Materials Science and Engineering C, 75, 12501258.CrossRefGoogle ScholarPubMed
Page, J. B. (1943). Differential thermal analysis of montmorillonite. Soil Science, 56, 273284.CrossRefGoogle Scholar
Rebitski, E. P., Alcântara, A. C. S., Darder, M., Cansian, R. L., Gómez-Hortigüela, L., & Pergher, S. B. C. (2018a). Functional carboxymethylcellulose/zein bionanocomposite films based on neomycin supported on sepiolite or montmorillonite clays. ACS Omega, 3, 1353813550.CrossRefGoogle Scholar
Rebitski, E. P., Aranda, P., Darder, M., Carraro, R., & Ruiz-Hitzky, E. (2018b). Intercalation of metformin into montmorillonite. Dalton Transactions, 47, 31853192.CrossRefGoogle ScholarPubMed
Rebitski, E. P., Souza, G. P., Santana, S. A. A., Pergher, S. B. C., & Alcântara, A. C. S. (2019). Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Applied Clay Science, 173, 3545.CrossRefGoogle Scholar
Ribeiro, L. N. M., Alcântara, A. C. S., Darder, M., Aranda, P., Herrmann, P. S. P., Araújo-Moreira, F. M., García-Hernández, M., & Ruiz-Hitzky, E. (2014). Bionanocomposites containing magnetic graphite as potential systems for drug delivery. International Journal of Pharmaceutics, 477, 553563.CrossRefGoogle ScholarPubMed
Rivera, A., Valdés, L., Jiménez, J., Pérez, I., Lam, A., Altshuler, E., De Ménorval, L. C., Fossum, J. O., Hansen, E. L., & Rozynek, Z. (2016). Smectite as ciprofloxacin delivery system: Intercalation and temperature-controlled release properties. Applied Clay Science, 124–125, 150156.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2005). Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 15, 36503662.CrossRefGoogle Scholar
Salvé, J., Grégoire, B., Imbert, L., Hubert, F., Karpel Vel Leitner, N., & Leloup, M. (2021). Design of hybrid Chitosan-Montmorillonite materials for water treatment: Study of the performance and stability. Chemical Engineering Journal Advances, 6, 100087.CrossRefGoogle Scholar
Sepehr, M. N., Al-Musawi, T. J., Ghahramani, E., Kazemian, H., & Zarrabi, M. (2017). Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arabian Journal of Chemistry, 10, 611623.CrossRefGoogle Scholar
Sharma, A., Bhat, S., Vishnoi, T., Nayak, V., & Kumar, A. (2013). Three-dimensional supermacroporous carrageenan-gelatin cryogel matrix cryogel matrix for tissue engineering applications. BioMed Research International, 2013, 115.Google ScholarPubMed
Svagan, A. J., Berglund, L. A., & Jensen, P. (2011). Cellulose nanocomposite biopolymer foam—hierarchical structure effects on energy absorption. ACS Applied Materials & Interfaces, 3, 14111417.CrossRefGoogle Scholar
Thai, T., Salisbury, B.H., & Zito, P.M. (2021). Ciprofloxacin. Treasure Island. StatPearls Publishing, Florida, USA.Google Scholar
Varghese, J. S., Chellappa, N., & Fathima, N. N. (2014). Gelatincarrageenan hydrogels: Role of pore size distribution on drug delivery process. Colloids and Surfaces B: Biointerfaces, 113, 346351.CrossRefGoogle ScholarPubMed
Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48, 291295.CrossRefGoogle Scholar
Wang, C. J., Li, Z., & Jiang, W. T. (2011). Adsorption of ciprofloxacin on 2: 1 dioctahedral clay minerals. Applied Clay Science, 53, 723728.CrossRefGoogle Scholar
Wu, Q., Li, Z., Hong, H., Yin, K., & Tie, L. (2010). Adsorption and intercalation of ciprofloxacin on montmorillonite. Applied Clay Science, 50, 204211.CrossRefGoogle Scholar
Wu, W., Chen, W., & Jin, Q. (2016). Oral mucoadhesive buccal film of ciprofloxacin for periodontitis: Preparation and characterization. Tropical Journal of Pharmaceutical Research, 15, 447451.CrossRefGoogle Scholar
Wu, M. J., Wu, J. Z., Zhang, J., Chen, H., Zhou, J. Z., Qian, G. R., Xu, Z. P., Du, Z., & Rao, Q. L. (2018). A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. Catalysis Science & Technology, 8, 12071228.CrossRefGoogle Scholar
Yan, H., Zhang, P., Chen, X., Bao, C., Zhao, R., Hu, J., Liu, C., & Lin, Q. (2020). Preparation and characterization of octyl phenyl polyoxyethylene ether modified organo-montmorillonite for ibuprofen controlled release. Applied Clay Science, 189, 105519.CrossRefGoogle Scholar