Skip to main content

Advertisement

Log in

Sensor Systems for Greenhouse Microclimate Monitoring and Control: a Review

  • Review
  • Published:
Journal of Biosystems Engineering Aims and scope Submit manuscript

Abstract

Purpose

Sensors are the primary component of a monitoring and control system. Effective monitoring and control of the microclimatic environment in a greenhouse is the key necessity for protecting crops from adverse environments. Moreover,the greenhouse microclimate is influenced by various factors. In the large-scale greenhouse facilities, several sensors and actuators are needed to control the system. Manual monitoring and control of such a large and complex system is labor-intensive and impractical. Therefore, an automatic monitoring and control system in the greenhouse becomes indispensable. In addition, microclimatic parameters such as temperature, humidity, and solar irradiance in the greenhouse are non-linearly interlinked, thereby forming a non-linear multivariate system. Thus, an appropriately designed sensor system is needed for monitoring and controlling the greenhouse microclimate.

Methods

Research articles on greenhouse microclimate monitoring and control published in the last 6 years were considered. The sensor devices and technologies applied to control particular environmental parameters in the greenhouse and their key achievements were systematically reviewed. In addition, different approaches to determine the optimum number of sensors and their placement inside the greenhouse were investigated.

Results

It was found that spatially installed sensor devices above the plant height reflect the actual information of the environment getting by plant. Furthermore, both hardware and software-based sensing techniques control the greenhouse microclimate optimally. The proper positioning of sensors and their protection from harsh environmental factors is also essential.

Conclusions

It can be concluded that modern sensor devices and systems are driving the greenhouse monitoring and control system toward an intelligent, real-time, remotely accessible, and fully automatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgments

We would like to thank Editage (www.editage.co.kr) for English language editing.

Funding

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Tae Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhujel, A., Basak, J.K., Khan, F. et al. Sensor Systems for Greenhouse Microclimate Monitoring and Control: a Review. J. Biosyst. Eng. 45, 341–361 (2020). https://doi.org/10.1007/s42853-020-00075-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42853-020-00075-6

Keywords

Navigation