Skip to main content
Log in

An Improved Adaptive Full-Order Sliding-Mode Observer for Sensorless Control of High-Speed Permanent-Magnet Synchronous Motor

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

The development of advanced sensorless control of high-speed permanent-magnet synchronous motor (PMSM) has been an ever-increasing demand in modern drive fields. Herein, in this article, an improved adaptive full-order sliding-mode observer (FSMO) for sensorless control of high-speed PMSM is proposed to improve the estimation accuracy of rotor speed and position. A model-referenced adaptive electrical angular velocity & back electromotive force (back EMF) observer is established. The estimated electrical angular velocity is directly fed back to the FSMO, which highly reduces the noise in the FSMO & phase-locked loop (PLL) system and weakens the chattering of the back EMF waveform, so that the estimation accuracy of the PLL on rotor speed and position is significantly improved. Simulations and experiments compared with the conventional method are both carried out with a 3 kW high-speed PMSM. The experimental results demonstrate that the proposed FSMO has preferable speed and position estimation capabilities under various operating conditions, which verifies the feasibility and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

E α,E β :

Back EMF on α-β axis

i d,i q :

Stator current on d-q axis

i α,i β :

Stator current on α-β axis

L d,L q :

Inductance on d-q axis

L s :

Stator inductance

R s :

Stator resistance

u d , u q :

Stator voltage on d-q axis

u α,u β :

Stator voltage on α-β axis

θ e :

Electrical rotor position

ψ f :

Flux linkage of permanent magnet

ω e :

Electrical angular speed

References

  1. Tarczewski T, Grzesiak LM (2016) Constrained state feedback speed control of PMSM based on model predictive approach. IEEE Trans Ind Electron 63(6):3867–3875

    Article  Google Scholar 

  2. Song X, Fang J, Han B, Zheng S (2016) Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error. IEEE Trans Power Electron 31(2):1438–1449

    Article  ADS  Google Scholar 

  3. Chandran P, Mylsamy K, Umapathy PS (2023) Hybrid optimization approach for improved efficiency in permanent magnet brushless DC motor design: combining cauchy particle swarm & moth flame methods. Electr Power Compon Syst 51(16):1685–1696

    Article  Google Scholar 

  4. Jung J, Leu VQ, Do TD, Kim E, Choi HH (2015) Adaptive PID speed control design for permanent magnet synchronous motor drives. IEEE Trans Power Electron 30(2):900–908

    Article  ADS  Google Scholar 

  5. Chandran P, Mylsamy K, Umapathy PS (2023) Analytical evaluation of single-input dual-output based integrated luo-buck converter for BLDC motor. IET Power Electron 16(6):937–947

    Article  Google Scholar 

  6. Kim J, Jeong I, Nam K, Yang J, Hwang T (2015) Sensorless control of PMSM in a high-speed region considering iron loss. IEEE Trans Ind Electron 62(10):6151–6159

    Article  Google Scholar 

  7. Verrelli CM, Bifaretti S, Carfagna E (2019) Speed sensor fault tolerant PMSM machines: from position-sensorless to sensorless control. IEEE Trans Ind Appl 55(4):3946–3954

    Article  Google Scholar 

  8. Liang D, Li J, Qu R, Kong W (2018) Adaptive second-order sliding-mode observer for PMSM sensorless control considering VSI nonlinearity. IEEE Trans Power Electron 33(10):8994–9004

    Article  ADS  Google Scholar 

  9. Xu W, Qu S, Zhao L, Zhang H (2021) An improved adaptive sliding mode observer for middle- and high-speed rotor tracking. IEEE Trans Power Electron 36(1):1043–1053

    Article  ADS  Google Scholar 

  10. Zuo Y, Lai C, Iyer KLV (2023) A review of sliding mode observer based sensorless control methods for PMSM drive. IEEE Trans Power Electron 38(9):11352–11367

    Article  ADS  Google Scholar 

  11. Xu W, Jiang Y, Mu C, Blaabjerg F (2019) Improved nonlinear flux observer-based second-order SOIFO for PMSM sensorless control. IEEE Trans Power Electron 34(1):565–579

    Article  ADS  Google Scholar 

  12. Yang H, Yang R, Hu W, Huang Z (2021) FPGA-based sensorless speed control of PMSM using enhanced performance controller based on the reduced-order EKF. IEEE J Emerg Sel Topics Power Electron 9(1):289–301

    Article  Google Scholar 

  13. Ye S, Yao X (2020) A modified flux sliding-mode observer for the sensorless control of PMSMs with online stator resistance and inductance estimation. IEEE Trans Power Electron 35(8):8652–8662

    Article  ADS  Google Scholar 

  14. Gong C, Hu Y, Gao J, Wang Y, Yan L (2020) An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM. IEEE Trans Ind Electron 67(7):5913–5923

    Article  Google Scholar 

  15. Liu J, Zhang Y (2023) Performance improvement of nonlinear flux observer for sensorless control of PMSM. IEEE Trans Ind Electron 70(12):12014–12023

    Article  Google Scholar 

  16. Qiao Z, Shi T, Wang Y, Yan Y, Xia C, He X (2013) New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans Ind Electron 60(2):710–719

    Article  Google Scholar 

  17. Ding L, Li YW, Zargari NR (2021) Discrete-time SMO sensorless control of current source converter-fed PMSM drives with low switching frequency. IEEE Trans Ind Electron 68(3):2120–2129

    Article  Google Scholar 

  18. Kim H, Son J, Lee J (2011) A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans Ind Electron 58(9):4069–4077

    Article  Google Scholar 

  19. Zou X, Ding H, Li J (2023) Sensorless control strategy of permanent magnet synchronous motor based on fuzzy sliding mode controller and fuzzy sliding mode observer. J Electr Eng Technol 18(3):2355–2369

    Article  Google Scholar 

  20. Lee H, Lee J (2013) Design of iterative sliding mode observer for sensorless PMSM control. IEEE Trans Control Syst Technol 21(4):1394–1399

    Article  Google Scholar 

  21. Xiao X, Zhang Y, Song X, Yildirim T, Zhang F (2018) Virtual flux direct power control for PWM rectifiers based on an adaptive sliding mode observer. IEEE Trans Ind Appl 54(5):5196–5205

    Article  Google Scholar 

  22. Xu Y, Wang C, Yuan W (2023) Anti-disturbance position sensorless control of PMSM based on improved sliding mode observer with suppressed chattering and no phase delay. J Electr Eng Technol 18(4):2895–2907

    Article  Google Scholar 

  23. Liang D, Li J, Qu R (2017) Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation. IEEE Trans Ind Appl 53(4):3672–3682

    Article  Google Scholar 

  24. Nurettin A, İnanç N (2023) Sensorless vector control for induction motor drive at very low and zero speeds based on an adaptive-gain super-twisting sliding mode observer. IEEE J Emerg Sel Topics Power Electron 11(4):4332–4339

    Article  Google Scholar 

  25. Zhao L, Huang J, Liu H, Li B, Kong W (2014) Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives. IEEE Trans Ind Electron 61(10):5280–5289

    Article  Google Scholar 

  26. Feng Y, Yu X, Han F (2013) High-order terminal sliding-mode observer for parameter estimation of a permanent-magnet synchronous motor. IEEE Trans Ind Electron 60(10):4272–4280

    Article  Google Scholar 

  27. Yin Z, Zhang Y, Cao X, Yuan D, Liu J (2022) Estimated position error suppression using novel PLL for IPMSM sensorless drives based on full-order SMO. IEEE Trans Power Electron 37(4):4463–4474

    Article  ADS  Google Scholar 

  28. Xu W, Qu S, Zhao J, Zhang H, Du X (2021) An improved full-order sliding-mode observer for rotor position and speed estimation of SPMSM. IEEE Access 9:15099–15109

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China, NO. 52075239 and the Fundamental Research Funds for the Central Universities, NO. NP2022411.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runhui Yao or Jin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, R., Zhou, J., Shi, J. et al. An Improved Adaptive Full-Order Sliding-Mode Observer for Sensorless Control of High-Speed Permanent-Magnet Synchronous Motor. J. Electr. Eng. Technol. 19, 1579–1591 (2024). https://doi.org/10.1007/s42835-023-01665-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-023-01665-y

Keywords

Navigation