Skip to main content
Log in

Modification of coal tar-based porous carbon and analysis of its structure and electrochemical characteristics

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Oxygen-rich porous carbon is of great interest for energy storage applications due to its improved local electronic structures compared with unmodified porous carbon. However, a tunable method for the preparation of oxygen-rich porous carbon with a special microstructure is still worth developing. Herein, a novel modification of porous carbon with different microstructures is facilely prepared via low-temperature solvothermal and KOH activation methods that employ the coal tar and eight substances, such as cellulose as carbon source and modifier, respectively. By testing the yield, surface group structure, lattice structures, morphology, thermal weight loss, and specific capacitance of carbonaceous mesophase, cellulose–hydrochloric acid is identified as the additive for the preparation of oxygen-rich coal tar-based porous carbon. The obtained porous carbon displays a specific surface area of up to 859.49 m2 g−1 and an average pore diameter of 2.39 nm. More importantly, the material delivers a high capacity of 275.95 F g−1 at 0.3 A g−1 and maintains a high capacitance of 220 F g−1 even at 10 A g−1. When in a neutral electrolyte, it can still retain a reversible capacity of 236.72 F g−1 at 0.3 A g−1 and 136.79 F g−1 at 10 A g−1. This work may provide insight into the design of carbon anode materials with high specific capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Zou J, Wu S, Liu Y, SunY CY, Hsu JP, Wee ATS, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663. https://doi.org/10.1016/j.carbon.2018.01.008

    Article  CAS  Google Scholar 

  2. Zou J, Liao G, Jiang J, Xiong Z, Bai S, Wang H, Li X (2022) In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin J Struct Chem 41:2201025–2201033. https://doi.org/10.14102/j.cnki.0254-5861.2021-0039

    Article  CAS  Google Scholar 

  3. Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  CAS  Google Scholar 

  4. Bai S, Yang M, Jiang J, He X, Zou J, Xiong Z, Liao G, Liu S (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. NPJ 2D Mater Appl 5:78. https://doi.org/10.1038/s41699-021-00259-4

    Article  CAS  Google Scholar 

  5. Wang J, Qin Q, Li F, Anjarsari Y, Sun W, Azzahiidah R, Zou J, Xiang K, Ma H, Jiang J, Arramel (2023) Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett 33:1381–1394. https://doi.org/10.1007/s42823-022-00401-2

    Article  Google Scholar 

  6. Dominguez-Alfaro A, Chau NDQ, Yan S, Mancino D, Pamulapati S, Williams S et al (2022) Electrochemical modification of carbon nanotube fibres. Nanoscale 14:9313–9322. https://doi.org/10.1039/d1nr07495d

    Article  CAS  PubMed  Google Scholar 

  7. Li F, Anjarsari Y, Wang J, Azzahiidah R, Jiang J, Zou J, Xiang K, Ma H, Arramel (2022) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett 33:1321–1331. https://doi.org/10.1007/s42823-022-00380-4

    Article  CAS  Google Scholar 

  8. Wang L, Hu X (2018) Recent advances on porous carbon materials for electrochemical energy storage. Chem Asian J 13:1518–1529. https://doi.org/10.1002/asia.201800553

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Yan B, Zheng J, Wang F, Zhao L, Zhang Q, Xu W, He S (2021) Review on porous carbon materials engineered by ZnO templates: design, synthesis and capacitance performance. Mater Des 201:109518–109518. https://doi.org/10.1016/j.matdes.2021.109518

    Article  CAS  Google Scholar 

  10. Wabo SG, Klepel O (2021) Nitrogen release and pore formation through koh activation of nitrogen-doped carbon materials: an evaluation of the literature. Carbon Lett 31:581–592. https://doi.org/10.1016/j.matdes.2021.109518

    Article  CAS  Google Scholar 

  11. Li F, Jiang J, Wang J, Zou J, Sun W, Wang H, Xiang K, Wu P, Hsu JP (2022) Porous 3D carbon-based materials: an emerging platform for efficient hydrogen production. Nano Res 16:127–145. https://doi.org/10.1007/s12274-022-4799-z

    Article  CAS  ADS  Google Scholar 

  12. Chen H, Sun N, Zhu Q, Soomro RA, Xu B (2022) Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries. Adv Sci 9:e2200023. https://doi.org/10.1002/advs.202200023

    Article  CAS  Google Scholar 

  13. Cai J, Hou L, Lan Y, Zhang C, Liu G, Zhu Y, Zhang J, Zhao S, Zhang Y (2022) Preparation of asphalt-based porous carbon materials and their application in supercapacitors. Chem Progr 42:1895–1906. https://doi.org/10.16085/j.issn.1000-6613.2022-1030

    Article  Google Scholar 

  14. Sun L, Gong Y, Li D, Pan C (2022) Biomass-derived porous carbon materials:synthesis, designing, and applications for supercapacitors. Green Chem 24:3864–3894. https://doi.org/10.1039/d2gc00099g

    Article  CAS  Google Scholar 

  15. Gao Z, Zhu H, Li Y, Fan S, Zhang J (2020) Preparation and electrochemical properties of sucrose-based porous carbon materials by combustion expansion-chemical activation method. J Appl Electrochem 50:549–558. https://doi.org/10.1007/s10800-020-01411-6

    Article  CAS  Google Scholar 

  16. Yang Y, Zuo P, Qu S (2022) Adjusting hydrophily and aromaticity strategy for pitch-based hierarchical porous carbon and its application in flexible supercapacitor. Fuel 311:122514. https://doi.org/10.1016/j.fuel.2021.122514

    Article  CAS  Google Scholar 

  17. Cao S, Yang J, Li J, Shi K, Li X (2019) Preparation of oxygen-rich hierarchical porous carbon for supercapacitors through the co-carbonization of pitch and biomass. Diam Relat Mater 96:118–125. https://doi.org/10.1016/j.diamond.2019.04.036

    Article  CAS  ADS  Google Scholar 

  18. Liu Q, Jiang Y, Song H, Liao S (2012) Preparation of LiFePO4/C cathode materials by organic templating agent-assisted spray drying and its electrochemical properties. Electrochemistry 18:18–23. https://doi.org/10.13208/j.electrochem.2012.01.005

    Article  Google Scholar 

  19. Yang Y, Niu H, Qin F, Guo Z, Wang J, Ni G, Zuo P, Qu S, Shen W (2020) MnO2 doped carbon nanosheets prepared from coal tar pitch for advanced asymmetric supercapacitor. Electrochim Acta 354:136667. https://doi.org/10.1016/j.electacta.2020.136667

    Article  CAS  Google Scholar 

  20. Zhou C, Wu P, Xu X, Song W (2022) Decision tree model to efficiently optimize the process conditions of carbonaceous mesophase prepared with coal tar. Carbon Lett 33:1–11. https://doi.org/10.1007/s42823-022-00430-x

    Article  ADS  Google Scholar 

  21. Peng W, Zhou C, Xu X, Zhang Z, Han T, Xiong C (2023) Low-temperature solvothermal method for coal tar-based carbonaceous mesophase preparation and its excellent performance. Energy Fuels 37:11683–11693. https://doi.org/10.1021/acs.energyfuels.3c01225

    Article  CAS  Google Scholar 

  22. Liu Y, Yan G, Wang J, Lu W, Li Y, Huang J, Yan L, Liao J, Bao W, Wang J, Chang L (2022) Liquefaction pitch-based porous carbon: preparation and relationship between pore structure and electrochemical properties. Diam Relat Mater 122:108824. https://doi.org/10.1016/j.diamond.2022.108824

    Article  CAS  ADS  Google Scholar 

  23. Jiao T, Gong M, Zhuang X, Li C, Zhang S (2015) A new separation method for phenolic compounds from low-temperature coal tar with urea by complex formation. J Ind Eng Chem 29:344–348. https://doi.org/10.1016/j.jiec.2015.04.013

    Article  CAS  Google Scholar 

  24. Qin B, Wang Q, Zhang X, Xie X, Jin L, Cao Q (2018) One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors. Electrochim Acta 283:655–663. https://doi.org/10.1016/j.electacta.2018.06.201

    Article  CAS  Google Scholar 

  25. Jin OH, Seok K (2022) Preparation and capacitive property of graphene oxide composite supercapacitor electrodes functionalized by Fe-based metal-organic frameworks. Carbon Lett 32:273–283. https://doi.org/10.1007/s42823-021-00300-y

    Article  Google Scholar 

  26. Zhang G, Guan T, Wang N, Wu J, Wang J, Qiao J, Li K (2020) Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance. Chem Eng J 399:125818. https://doi.org/10.1016/j.cej.2020.125818

    Article  CAS  Google Scholar 

  27. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2002) Solvothermal preparation of CeO2 nanoparticles-graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32:1277–20222. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  28. Moseenkov SI, Kuznetsov VL, Zolotarev NA, Kolesov BA, Prosvirin IP, Ishchenko AV, Zavorin AV (2023) Investigation of amorphous carbon in nanostructured carbon materials (A comparative study by TEM, XPS, Raman spectroscopy and XRD). Materials 16:1112. https://doi.org/10.3390/ma16031112

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Le F, Ren P, Jia W, Wang T, Tao Y, Wu D (2023) High-yield preparation of coal tar pitch based porous carbon via low melting point fire retardant carbonation strategy for supercapacitor. Chem Eng J 470:144131. https://doi.org/10.1016/j.cej.2023.144131

    Article  CAS  Google Scholar 

  30. Dong Y, Zhang S, Du X, Hong S, Zhao S, Chen Y, Chen X, Song H (2019) Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv Funct Mater 29:1901127. https://doi.org/10.1002/adfm.201901127

    Article  CAS  Google Scholar 

  31. Tao R, Wang T, Fan J, Meyer HM III, Borisevich AY, Do-Thanh CL, Dai S (2022) Ionothermal synthesis of carbon/TiO2 nanocomposite for supercapacitors. Chem Nano Mater 8:e202200075. https://doi.org/10.1002/cnma.202200075

    Article  CAS  Google Scholar 

  32. Liang J, Wang Z, Huang L, Zou P, Liu X, Ni Q, Wang X, Wang W, Tao R (2023) Facile and tunable synthesis of nitrogen-doped graphene with different microstructures for high-performance supercapacitors. ACS Mater Lett 5:944–954. https://doi.org/10.1021/acsmaterialslett.2c01092

    Article  CAS  Google Scholar 

  33. Fan Z, Li Z, Wei X, Kong Q, Zhao J, Li L, Li J, Liu Z, Zong Z (2023) Porous carbon fabricated by a residue from Longquan lignite ethanolysis as an electrochemical sensor for simultaneous detection of hydroquinone and catechol in the presence of resorcinol. Microchem J 189:108543. https://doi.org/10.1016/j.microc.2023.108543

    Article  CAS  Google Scholar 

  34. Li W, Yang X, Chen Z, Wang X, Qiu J (2022) Synthesis and structure regulation of armor-wearing biomass-based porous carbon: suppression the leakage current and self-discharge of supercapacitors. Carbon 196:136–145. https://doi.org/10.1016/j.carbon.2022.04.037

    Article  CAS  Google Scholar 

  35. Murugan N, Thangarasu S, Seo SB, Choi YR, Magdum SS, Oh TH, Kim YA (2023) Facile synthesis of interconnected layered porous carbon framework for high-performance supercapacitors. Carbon Lett 33:791–802. https://doi.org/10.1007/s42823-023-00460-z

    Article  Google Scholar 

  36. Li Y, Lu Y, Meng Q, Jensen AC, Zhang Q et al (2019) Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv Energy Mater 9:1902852. https://doi.org/10.1002/aenm.201902852

    Article  CAS  Google Scholar 

  37. Tong L, Wang T, Chen Y, Lin G, He L, Liu X (2023) Nitrogen self-doped porous lamellar carbon with superior electrochemical performance. Diam Relat Mater 134:109787. https://doi.org/10.1016/j.diamond.2023.109787

    Article  CAS  ADS  Google Scholar 

  38. Yu S, Sano H, Zheng G (2022) Mesoporous carbon microspheres fabricated from KOH activation of sulfonated resorcinol-formaldehyde for “water-in-salt” electrolyte-based high-voltage (2.5 V) supercapacitors. Carbon Lett 32:285–294. https://doi.org/10.1007/s42823-021-00301-x

    Article  Google Scholar 

  39. Yang Z, Fan Q, Lai S, Yue L, Cheng J, Zhu Y, Zhao X (2022) Preparation of N/O-codoped quinoline pitch-based porous carbons for high-quality supercapacitor electrodes. New J Chem 46:5272–5274. https://doi.org/10.1039/D1NJ05800B

    Article  Google Scholar 

  40. Yang J, Shen Z, Hao Z (2004) Preparation of highly microporous and mesoporous carbon from the mesophase pitch and its carbon foams with KOH. Carbon 42:1872–1875. https://doi.org/10.1016/j.carbon.2004.02.030

    Article  CAS  Google Scholar 

  41. Li X, Zhou J, Xu L, Wang M, Li X (2019) One step synthesis of ultrathin 2D carbon nanosheets for high-performance supercapacitors. Appl Surf Sci 490:604–610. https://doi.org/10.1016/j.apsusc.2019.06.101

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province (Grant No. LH2023E124) and the Innovative Research Program for Graduate Students of Heilongjiang University of Science and Technology (Grant No. YJSCX2023-108HKD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wu or Yuting Lv.

Ethics declarations

Conflict of interest

All authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wu, P., Zhou, C. et al. Modification of coal tar-based porous carbon and analysis of its structure and electrochemical characteristics. Carbon Lett. 34, 163–175 (2024). https://doi.org/10.1007/s42823-023-00635-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00635-8

Keywords

Navigation