Skip to main content
Log in

Tungsten-based activated carbon matrix for the catalytic oxidation of model volatile organic compounds (VOCs) and pharmaceutical VOCs from wastewater

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are a paramount factor in air pollution of the environment. VOCs are vastly present in the wastewater discharged by the pharmaceutical industries. As it is evaporative in nature, it enters the environment spontaneously and causes air pollution, global warming, acid rain and climate change. VOCs must be treated before discharging or any other aerobic methods using an efficient catalyst. As the catalytic oxidation in the liquid phase is facile compared to the gas phase, this study investigated on catalytic liquid-phase oxidation of VOCs in model and real pharmaceutical wastewater. The model compounds of toluene-, ethylbenzene- and chlorobenzene-contaminated waters were treated separately along with the VOCs present in real pharmaceutical wastewater using a tungsten-based carbon catalyst. The tungsten was impregnated on the low-cost activated carbon matrix as it has good selectivity and catalytic property toward VOCs for facile catalytic operations. The metal catalysts were characterised by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy with elemental and mapping analysis. The treatability was monitored by total organic carbon, ultra-violet spectroscopy and high-pressure liquid chromatography analysis. The tungsten-impregnated activated carbon matrix (WACM) has a catalytic efficiency toward toluene by 85.45 ± 1.78%, ethylbenzene by 93.9 ± 1.16%, chlorobenzene by 85.9 ± 2.26% and pharmaceutical VOCs by 85.05 ± 1.73% in 20 treatment cycles. The results showed that WACM worked efficiently in VOCs treatment, preventing the environment from air pollution. Furthermore, liquid-phase oxidation could easily be implementable on an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Garg A, Gupta NC (2019) A comprehensive study on spatio-temporal distribution, health risk assessment and ozone formation potential of BTEX emissions in ambient air of Delhi, India. Sci Total Environ 659:1090–1099. https://doi.org/10.1016/j.scitotenv.2018.12.426

    Article  CAS  Google Scholar 

  2. PietropolliCharmet A, Ceselin G, Stoppa P, Tasinato N (2022) The spectroscopic characterization of halogenated pollutants through the interplay between theory and experiment: application to R1122. Molecules. 27:748. https://doi.org/10.3390/molecules27030748

    Article  CAS  Google Scholar 

  3. Mohd Hanif N, LimiHawari NSS, Othman M, Abd Hamid HH, Ahamad F, Uning R, Ooi MCG, Wahab MIA, Sahani M, Latif MT (2021) Ambient volatile organic compounds in tropical environments: potential sources, composition and impacts—a review. Chemosphere 285:131355. https://doi.org/10.1016/j.chemosphere.2021.131355

    Article  CAS  Google Scholar 

  4. Soares MV, Mesadri J, Gonçalves DF, Cordeiro LM, Franzen da Silva A, Obetine Baptista FB, Wagner R, Dalla Corte CL, Soares FAA, Ávila DS (2022) Neurotoxicity induced by toluene: In silico and in vivo evidences of mitochondrial dysfunction and dopaminergic neurodegeneration. Environ Pollut 298:118856. https://doi.org/10.1016/J.ENVPOL.2022.118856

    Article  CAS  Google Scholar 

  5. Shojaei A, Ghafourian H, Yadegarian L, Lari K, Sadatipour MT (2021) Removal of volatile organic compounds (VOCs) from waste air stream using ozone assisted zinc oxide (ZnO) nanoparticles coated on zeolite. J Environ Heal Sci Eng 19:771–780. https://doi.org/10.1007/s40201-021-00644-7

    Article  CAS  Google Scholar 

  6. Caban M, Stepnowski P (2021) How to decrease pharmaceuticals in the environment? A review. Environ Chem Lett 19:3115–3138. https://doi.org/10.1007/s10311-021-01194-y

    Article  CAS  Google Scholar 

  7. Fatima S, Govardhan B, Kalyani S, Sridhar S (2022) Extraction of volatile organic compounds from water and wastewater by vacuum-driven membrane process: a comprehensive review. Chem Eng J 434:134664. https://doi.org/10.1016/j.cej.2022.134664

    Article  CAS  Google Scholar 

  8. Jose J, Philip L (2021) Continuous flow pulsed power plasma reactor for the treatment of aqueous solution containing volatile organic compounds and real pharmaceutical wastewater. J Environ Manage 286:112202. https://doi.org/10.1016/j.jenvman.2021.112202

    Article  CAS  Google Scholar 

  9. AiLing R, Jin Z, Bin G, CuiMian L, YuZhou L (2016) Emission characteristics of odor pollutants from a pharmaceutical enterprise and their remediation. Appl Mater Sci Environ Mater. https://doi.org/10.1142/9789813141124_0029

    Article  Google Scholar 

  10. Lhotský O, Krákorová E, Mašín P, Žebrák R, Linhartová L, Křesinová Z, Kašlík J, Steinová J, Rødsand T, Filipová A, Petrů K, Kroupová K, Cajthaml T (2017) Pharmaceuticals, benzene, toluene and chlorobenzene removal from contaminated groundwater by combined UV/H2O2 photo-oxidation and aeration. Water Res 120:245–255. https://doi.org/10.1016/j.watres.2017.04.076

    Article  CAS  Google Scholar 

  11. Zhang X, Zhao W, Nie L, Shao X, Dang H, Zhang W, Wang D (2021) A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example. Environ Pollut 268:115868. https://doi.org/10.1016/j.envpol.2020.115868

    Article  CAS  Google Scholar 

  12. Tan Y, Han S, Chen Y, Zhang Z, Li H, Li W, Yuan Q, Li X, Wang T, Cheng Lee S (2021) Characteristics and source apportionment of volatile organic compounds (VOCs) at a coastal site in Hong Kong. Sci. Total Environ. 777:146241. https://doi.org/10.1016/j.scitotenv.2021.146241

    Article  CAS  Google Scholar 

  13. Li C, He L, Yao X, Yao Z (2022) Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.133868

    Article  Google Scholar 

  14. Shahzad Kamal M, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  Google Scholar 

  15. BaşaranDindaş G, Çalişkan Y, Çelebi EE, Tekbaş M, Bektaş N, Yatmaz HC (2020) Treatment of pharmaceutical wastewater by combination of electrocoagulation, electro-fenton and photocatalytic oxidation processes. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.103777

    Article  Google Scholar 

  16. Xie R, Lei D, Zhan Y, Liu B, Tsang CHA, Zeng Y, Li K, Leung DYC, Huang H (2020) Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process. Chem Eng J. https://doi.org/10.1016/j.cej.2019.02.112

    Article  Google Scholar 

  17. Carabineiro SAC, Chen X, Konsolakis M, Psarras AC, Tavares PB, Órfão JJM, Pereira MFR, Figueiredo JL (2015) Catalytic oxidation of toluene on Ce-Co and La-Co mixed oxides synthesized by exotemplating and evaporation methods. Catal Today 244:161–171. https://doi.org/10.1016/j.cattod.2014.06.018

    Article  CAS  Google Scholar 

  18. Sultana S, Vandenbroucke A, Leys C, De Geyter N, Morent R (2015) Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review. Catalysts 5:718–746. https://doi.org/10.3390/catal5020718

    Article  CAS  Google Scholar 

  19. Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278. https://doi.org/10.1016/j.cattod.2015.10.040

    Article  CAS  Google Scholar 

  20. Wang S, Liu Q, Zhao Z, Fan C, Chen X, Xu G, Wu M, Chen J, Li J (2020) Enhanced low-temperature activity of toluene oxidation over the rod-like MnO2/LaMnO3 perovskites with alkaline hydrothermal and acid-etching treatment. Ind Eng Chem Res 59:6556–6564. https://doi.org/10.1021/acs.iecr.0c00373

    Article  CAS  Google Scholar 

  21. Liang S, Shu Y, Li K, Ji J, Huang H, Deng J, Leung DYC, Wu M, Zhang Y (2020) Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122967

    Article  Google Scholar 

  22. Liu L, Liu R, Xu T, Zhang Q, Tan Y, Zhang Q, Ding J, Tang Y (2020) Enhanced catalytic oxidation of chlorobenzene over MnO2 grafted in situ by rare earth oxide: surface doping induces lattice oxygen activation. Inorg Chem 59:14407–14414. https://doi.org/10.1021/acs.inorgchem.0c02197

    Article  CAS  Google Scholar 

  23. Chaudhary V, Sharma S (2020) Study of ethylbenzene oxidation over polymer-silica hybrid supported Co (II) and Cu (II) complexes. Catal Today. https://doi.org/10.1016/j.cattod.2020.02.043

    Article  Google Scholar 

  24. Tang C, Zhang H, Xu K, Zhang Q, Liu J, He C, Fan L, Asefa T (2019) Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction. J Mater Chem A 7:18030–18038. https://doi.org/10.1039/c9ta04374h

    Article  CAS  Google Scholar 

  25. Liu L, Li J, Zhang H, Li L, Zhou P, Meng X, Guo M, Jia J, Sun T (2019) In situ fabrication of highly active Γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene. J Hazard Mater 362:178–186. https://doi.org/10.1016/j.jhazmat.2018.09.012

    Article  CAS  Google Scholar 

  26. Xie R, Fan G, Yang L, Li F (2016) Hierarchical flower-like Co-Cu mixed metal oxide microspheres as highly efficient catalysts for selective oxidation of ethylbenzene. Chem Eng J 288:169–178. https://doi.org/10.1016/j.cej.2015.12.004

    Article  CAS  Google Scholar 

  27. Mahilang M, Deb MK, Pervez S (2021) Biogenic secondary organic aerosols: A review on formation mechanism, analytical challenges and environmental impacts. Chemosphere 262:127771. https://doi.org/10.1016/j.chemosphere.2020.127771

    Article  CAS  Google Scholar 

  28. Guo J, Zhou S, Cai M, Zhao J, Song W, Zhao W, Hu W, Sun Y, He Y, Yang C, Xu X, Zhang Z, Cheng P, Fan Q, Hang J, Fan S, Wang XX, Wang XX (2020) Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China, Atmos. Chem. Phys. 20:7595–7615. https://acp.copernicus.org/articles/20/7595/2020. Accessed Feb 25, 2022

  29. Zhang Y, Wang Y, Xie R, Huang H, Leung MKH, Li J, Leung DYC (2022) Photocatalytic oxidation for volatile organic compounds elimination: from fundamental research to practical applications. Environ Sci Technol. https://doi.org/10.1021/acs.est.2c05444

    Article  Google Scholar 

  30. Shayegan Z, Haghighat F, Lee CS (2019) Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chem Eng J 357:533–546. https://doi.org/10.1016/j.cej.2018.09.167

    Article  CAS  Google Scholar 

  31. Gomes J, Lincho J, Domingues E, Gmurek M, Mazierski P, Zaleska-Medynska A, Klimczuk T, Quinta-Ferreira RM, Martins RC (2019) TiO2 nanotube arrays-based reactor for photocatalytic oxidation of parabens mixtures in ultrapure water: effects of photocatalyst properties, operational parameters and light source. Sci Total Environ 689:79–89. https://doi.org/10.1016/j.scitotenv.2019.06.410

    Article  CAS  Google Scholar 

  32. Zhang S, Liu S, Zhu X, Yang Y, Hu W, Zhao H, Qu R, Zheng C, Gao X (2019) Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts. Appl Surf Sci 479:1132–1140. https://doi.org/10.1016/j.apsusc.2019.02.118

    Article  CAS  Google Scholar 

  33. Can F, Courtois X, Duprez D (2021) Tungsten-based catalysts for environmental applications. Catalysts 11:703. https://doi.org/10.3390/catal11060703

    Article  CAS  Google Scholar 

  34. Liu J, Wang S-L, Xuan J-L, Shan B-F, Luo H, Deng L-P, Yang P, Qi C-Z (2022) Preparation of tungsten–iron composite oxides and application in environmental catalysis for volatile organic compounds degradation. Tungsten 4:38–51. https://doi.org/10.1007/s42864-021-00128-z

    Article  Google Scholar 

  35. Shanbhag MM, Shetti NP, Kalanur SS, Pollet BG, Upadhyaya KP, Ayachit NH, Aminabhavi TM (2022) Hf-doped tungsten oxide nanorods as electrode materials for electrochemical detection of paracetamol and salbutamol. ACS Appl Nano Mater 5:1263–1275. https://doi.org/10.1021/acsanm.1c03853

    Article  CAS  Google Scholar 

  36. Mos A, Castro C, Indris S, Ströbele M, Fink RF, Meyer HJ (2015) From WCl6 to WCl2: properties of intermediate Fe-W-Cl phases. Inorg Chem 54:9826–9832. https://doi.org/10.1021/acs.inorgchem.5b01574

    Article  CAS  Google Scholar 

  37. Maharaja P, Gokul E, Prabhakaran N, PatchaiMurugan K, Karthikeyan S, Boopathy R, Swarnalatha S, Sekaran G (2016) Simultaneous removal of NH4+-N and refractory organics through sequential heterogeneous Fenton oxidation process and struvite precipitation: kinetic study. RSC Adv 6:4250–4261. https://doi.org/10.1039/c5ra20492e

    Article  CAS  Google Scholar 

  38. APHA (2017) Standard methods for the examination of water and wastewater. https://doi.org/10.2105/SMWW.2882.216

  39. Somasundaram S, Sekar K, Gupta VK, Ganesan S (2012) Synthesis and characterization of mesoporous activated carbon from rice husk for adsorption of glycine from alcohol-aqueous mixture. J Mol Liq 177:416–425. https://doi.org/10.1016/j.molliq.2012.09.022

    Article  CAS  Google Scholar 

  40. Hu L, Ji S, Xiao T, Guo C, Wu P, Nie P (2007) Preparation and characterization of tungsten carbide confined in the channels of SBA-15 mesoporous silica. J Phys Chem B 111:3599–3608. https://doi.org/10.1021/jp066349b

    Article  CAS  Google Scholar 

  41. El-Salamony RA, Amdeha E, Badawy NA, Ghoneim SA, Al-Sabagh AM (2018) Visible light sensitive activated carbon-metal oxide (TiO2, WO3, NiO, and SnO) nano-catalysts for photo-degradation of methylene blue: a comparative study. Toxicol Environ Chem 100:143–156. https://doi.org/10.1080/02772248.2018.1497634

    Article  CAS  Google Scholar 

  42. Oparanti SO, Abdelmalik AA, Khaleed AA, Abifarin JK, Suleiman MU, Oteikwu VE (2022) Synthesis and characterization of cooling biodegradable nanofluids from non-edible oil for high voltage application. Mater Chem Phys 277:125485. https://doi.org/10.1016/j.matchemphys.2021.125485

    Article  CAS  Google Scholar 

  43. Saleh TA, Tuzen M, Sari A (2017) Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters. J Environ Chem Eng 5:2853–2860. https://doi.org/10.1016/j.jece.2017.05.038

    Article  CAS  Google Scholar 

  44. Swarnalatha S, Kumar AG, Sekaran G (2009) Electron rich porous carbon/silica matrix from rice husk and its characterization. J Porous Mater 16:239–245. https://doi.org/10.1007/s10934-008-9192-0

    Article  CAS  Google Scholar 

  45. Priyadharsan A, Vasanthakumar V, Shanavas S, Karthikeyan S, Anbarasan PM (2019) Crumpled sheet like graphene based WO 3 -Fe 2 O 3 nanocomposites for enhanced charge transfer and solar photocatalysts for environmental remediation. Appl Surf Sci 470:114–128. https://doi.org/10.1016/j.apsusc.2018.11.130

    Article  CAS  Google Scholar 

  46. Borah MJ, Sarmah HJ, Bhuyan N, Mohanta D, Deka D (2022) Application of Box-Behnken design in optimization of biodiesel yield using WO3/graphene quantum dot (GQD) system and its kinetics analysis. Biomass Convers Biorefinery 12:221–232. https://doi.org/10.1007/s13399-020-00717-x

    Article  CAS  Google Scholar 

  47. Pu W, Song Z, Yan J, Xu H, Ji H, Yuan S, Li H (2019) Preparation of oxygen-deficient 2D WO3−x nanoplates and their adsorption behaviors for organic pollutants: equilibrium and kinetics modeling. J Mater Sci 54:12463–12475. https://doi.org/10.1007/s10853-019-03780-6

    Article  CAS  Google Scholar 

  48. Wang Q, Zhang J, Li Q, Guo X, Zhang L (2020) Fabrication of WO2/W@C core-shell nanospheres for voltammetric simultaneous determination of thymine and cytosine. Microchim Acta. https://doi.org/10.1007/s00604-019-3987-3

    Article  Google Scholar 

  49. Karthikeyan S, Anil Kumar M, Maharaja P, Partheeban T, Sridevi J, Sekaran G (2014) Process optimization for the treatment of pharmaceutical wastewater catalyzed by poly sulpha sponge. J Taiwan Inst Chem Eng 45:1739–1747. https://doi.org/10.1016/j.jtice.2014.01.009

    Article  CAS  Google Scholar 

  50. Karthikeyan S, Ahamed RB, Velan M, Sekaran G (2014) Synthesis and characterization of Co-NPAC and in situ hydroxyl radical generation for the oxidation of dye laden wastewater from the leather industry. RSC Adv 4:63354–63366. https://doi.org/10.1039/C4RA10536B

    Article  CAS  Google Scholar 

  51. Maharaja P, Vasudha Priyadharshini S, Akshaya R, Swarnalatha S, Sekaran G (2019) Removal of glycosaminoglycans present in tannery saline soak wastewater using integrated biological reactor and amylase immobilised reactor. Desalin Water Treat 156:189–203. https://doi.org/10.5004/dwt.2019.23615

    Article  CAS  Google Scholar 

  52. Natarajan P, Karmegam PM, Madasamy J, Somasundaram S (2022) Molybdenum based nanoporous carbon silica matrix for the oxidation of volatile organic compounds present in the pharmaceutical industry wastewater. J Water Process Eng 48:102886. https://doi.org/10.1016/j.jwpe.2022.102886

    Article  Google Scholar 

  53. Wu W, Zhang X, Yang J, Li J, Li X (2020) Facile preparation of oxygen-rich activated carbon from petroleum coke for enhancing methylene blue adsorption. Carbon Lett 30:627–636. https://doi.org/10.1007/s42823-020-00134-0

    Article  Google Scholar 

  54. Boehm HP (2012) Free radicals and graphite. Carbon N Y 50:3154–3157. https://doi.org/10.1016/j.carbon.2011.10.013

    Article  CAS  Google Scholar 

  55. Cheng Q, Zhang GK (2020) Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review. Tungsten 2:240–250. https://doi.org/10.1007/s42864-020-00055-5

    Article  Google Scholar 

  56. Zhan S, Yang Y, Gao X, Yu H, Yang S, Zhu D, Li Y (2014) Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers. Catal Today 225:10–17. https://doi.org/10.1016/j.cattod.2013.08.018

    Article  CAS  Google Scholar 

  57. Chen X, Chen X, Cai S, Chen J, Xu W, Jia H, Chen J (2018) Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chem Eng J 334:768–779. https://doi.org/10.1016/j.cej.2017.10.091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author N Prabhakaran is very much thankful to the Council of Scientific and Industrial Research (CSIR), India, for providing the CSIR-Senior Research Fellowship (CSIR-SRF) (Grant numbers: 31/06(0462)/2K19-EMR-I, dated 29-03-2019) and CSIR-CLRI’s MLP-19. The authors thank the Director of CSIR-Central Leather Research Institute (CLRI), India, for permitting this work. The authors are also thankful to CLRI's Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS) for providing EPR, TGA and DSC analysis facilities to carry out this work. This research work was carried out as part of Mr N Prabhakaran's PhD programme registered with the University of Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnalatha Somasundaram.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1061 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, P., Chandrababu, P., Karmegam, P.M. et al. Tungsten-based activated carbon matrix for the catalytic oxidation of model volatile organic compounds (VOCs) and pharmaceutical VOCs from wastewater. Carbon Lett. 33, 1115–1132 (2023). https://doi.org/10.1007/s42823-023-00506-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00506-2

Keywords

Navigation