Skip to main content

Advertisement

Log in

A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies

  • Fungal and Bacterial Physiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Woese C (1998) The universal ancestor. Proc Natl Acad Sci U S A 95(12):6854–6859. https://doi.org/10.1073/pnas.95.12.6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weronika E, Łukasz K (2017) Tardigrades in space research - past and future. Orig Life Evol Biosph 47(4):545–553. https://doi.org/10.1007/s11084-016-9522-1

    Article  CAS  PubMed  Google Scholar 

  3. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167. https://doi.org/10.1128/mmbr.39.2.144-167.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361. https://doi.org/10.1016/j.resmic.2010.12.004

    Article  PubMed  Google Scholar 

  5. Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria--occurrence and significance in polar and temperate marine habitats. Cell Mol Biol (Noisy-le-grand) 50(5):553–561

    CAS  PubMed  Google Scholar 

  6. Chlebicz A, Śliżewska K (2018) Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review. Int J Environ Res Public Health 15(5):863. https://doi.org/10.3390/ijerph15050863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martínez-Rosales C, Fullana N, Musto H, Castro-Sowinski S (2012) Antarctic DNA moving forward: Genomic plasticity and biotechnological potential. FEMS Microbiol Lett 331(1):1–9. https://doi.org/10.1111/j.1574-6968.2012.02531.x

    Article  CAS  PubMed  Google Scholar 

  8. Torracchi CJE, Morel MA, Tapia-Vázquez I, Castro-Sowinski S, Batista-García RA, LA Yarzábal R (2020) Fighting plant pathogens with cold-active microorganisms: biopesticide development and agriculture intensification in cold climates. Appl Microbiol Biotechnol 104(19):8243–8256. https://doi.org/10.1007/S00253-020-10812-8

    Article  Google Scholar 

  9. Singer SJ, Nicolson GL (1972) The Fluid mosaic model of the structure of cell membranes. Science (1979) 175(4023):720–731. https://doi.org/10.1126/SCIENCE.175.4023.720

    Article  CAS  Google Scholar 

  10. Saita E, Albanesi D, De Mendoza D (2016) Sensing membrane thickness: Lessons learned from cold stress. Biochim Biophys Acta Mol Cell Biol Lipids 1861(8):837–846. https://doi.org/10.1016/j.bbalip.2016.01.003

    Article  CAS  Google Scholar 

  11. Sinensky M (1974) Homeoviscous adaptation: a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71(2):522–525. https://doi.org/10.1073/pnas.71.2.522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eze MO (1991) Phase transitions in phospholipid bilayers: lateral phase separations play vital roles in biomembranes. Biochem Educ 19(4):204–208. https://doi.org/10.1016/0307-4412(91)90103-F

    Article  CAS  Google Scholar 

  13. Klein W, Weber MHW, Marahiel MA (1999) Cold shock response of Bacillus subtilis: Isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181(17):5341–5349. https://doi.org/10.1128/jb.181.17.5341-5349.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bale NJ, Irene Rijpstra WC, Sahonero-Canavesi DX et al (2019) Fatty acid and hopanoid adaption to cold in the methanotroph Methylovulum psychrotolerans. Front Microbiol 5(10):589. https://doi.org/10.3389/fmicb.2019.00589

    Article  Google Scholar 

  15. Marizcurrena JJ, Cerdá MF, Alem D, Castro-Sowinski S (2019) Living with pigments: the colour palette of Antarctic life. In: The ecological role of micro-organisms in the Antarctic environment, pp 65–82. https://doi.org/10.1007/978-3-030-02786-5_4

    Chapter  Google Scholar 

  16. Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20(4):285–328. https://doi.org/10.3109/10408419409113560

    Article  CAS  PubMed  Google Scholar 

  17. Russell NJ (1984) Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9(3):108–112. https://doi.org/10.1016/0968-0004(84)90106-3

    Article  CAS  Google Scholar 

  18. Fulco AJ (1969) The biosynthesis of unsaturated fatty acids by bacilli. I. Temperature induction of the desaturation reaction. J Biol Chem 244(3):6885–6895

    Google Scholar 

  19. Bloch K (1971) 15 β-hydroxydecanoyl thioester dehydrase. Enzymes (Essen) 5(C):441–464. https://doi.org/10.1016/S1874-6047(08)60098-0

    Article  CAS  Google Scholar 

  20. De Mendoza D, Klages Ulrich A, Cronan JE (1983) Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of β-ketoacylacyl carrier protein synthase. J Biol Chem 258(4):2098–2101. https://doi.org/10.1016/s0021-9258(18)32888-6

    Article  PubMed  Google Scholar 

  21. Fujii DK, Fulco AJ (1977) Biosynthesis of unsaturated fatty acids by bacilli. Hyperinduction and modulation of desaturase synthesis. J Biol Chem 252(11):3660–3670. https://doi.org/10.1016/s0021-9258(17)40303-6

    Article  CAS  PubMed  Google Scholar 

  22. de Mendoza D, Cronan JE (1983) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem Sci 8(2):49–52. https://doi.org/10.1016/0968-0004(83)90388-2

    Article  Google Scholar 

  23. Weber MHW, Klein W, Müller L, Niess UM, Marahiel MA (2001) Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39(5):1321–1329. https://doi.org/10.1046/j.1365-2958.2001.02322.x

    Article  CAS  PubMed  Google Scholar 

  24. Zhu L, Cheng J, Luo B et al (2009) Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis. BMC Microbiol 9:119. https://doi.org/10.1186/1471-2180-9-119

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84(6):1260–1267. https://doi.org/10.1128/jb.84.6.1260-1267.1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garwin JL, Cronan JE (1980) Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J Bacteriol 141(3):1457–1459. https://doi.org/10.1128/jb.141.3.1457-1459.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Mendoza D, Garwin JL, Cronan JE (1982) Overproduction of cis-vaccenic acid and altered temperature control of fatty acid synthesis in a mutant of Escherichia coli. J Bacteriol 151(3):1608–1611. https://doi.org/10.1128/jb.151.3

    Article  PubMed  PubMed Central  Google Scholar 

  28. Garwin JL, Klages AL, Cronan JE (1980) β-Ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 255(8):3263–3265. https://doi.org/10.1016/s0021-9258(19)85692-2

    Article  CAS  PubMed  Google Scholar 

  29. Grau R, de Mendoza D (1993) Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol Microbiol 8(3):535–542. https://doi.org/10.1111/j.1365-2958.1993.tb01598.x

    Article  CAS  PubMed  Google Scholar 

  30. Aguilar PS, Cronan JE, De Mendoza D (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180(8):2194–2200. https://doi.org/10.1128/jb.180.8.2194-2200.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oshima M, Miyagawa A (1974) Comparative studies on the fatty acid composition of moderately and extremely thermophilic bacteria. Lipids 9(7):476–480. https://doi.org/10.1007/BF02534274

    Article  CAS  PubMed  Google Scholar 

  32. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol Rev 55(2):288–302. https://doi.org/10.1128/mmbr.55.2.288-302.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chattopadhyay MK, Jagannadham MV (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24(5):386–388. https://doi.org/10.1007/s003000100232

    Article  Google Scholar 

  34. Subczynski WK, Markowska E, Gruszecki WI, Sielewiesiuk J (1992) Effects of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. BBA - Biomembranes 1105(1):97–108. https://doi.org/10.1016/0005-2736(92)90167-K

    Article  CAS  PubMed  Google Scholar 

  35. Chattopadhyay MK, Jagannadham MV, Vairamani M, Shivaji S (1997) Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: Temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Res Commun 239(1):85–90. https://doi.org/10.1006/bbrc.1997.7433

    Article  CAS  PubMed  Google Scholar 

  36. Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S (2020) Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J Microbiol Biotechnol 36(8):120. https://doi.org/10.1007/s11274-020-02893-4

    Article  CAS  PubMed  Google Scholar 

  37. Flegler A, Lipski A (2022) The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch Microbiol 204(1):70. https://doi.org/10.1007/s00203-021-02719-3

    Article  CAS  Google Scholar 

  38. Seel W, Baust D, Sons D et al (2020) Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci Rep 10(1):330. https://doi.org/10.1038/s41598-019-57006-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jagannadham MV, Chattopadhyay MK, Subbalakshmi C et al (2000) Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 173(5-6):418–424. https://doi.org/10.1007/s002030000163

    Article  CAS  PubMed  Google Scholar 

  40. Sáenz JP, Sezgin E, Schwille P, Simons K (2012) Functional convergence of hopanoids and sterols in membrane ordering. Proc Natl Acad Sci U S A 109(35):14236–14240. https://doi.org/10.1073/pnas.1212141109

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mangiarotti A, Genovese DM, Naumann CA, Monti MR, Wilke N (2019) Hopanoids, like sterols, modulate dynamics, compaction, phase segregation and permeability of membranes. Biochim Biophys Acta Biomembr 1861(12):183060. https://doi.org/10.1016/j.bbamem.2019.183060

    Article  CAS  PubMed  Google Scholar 

  42. Oshkin IY, Belova SE, Danilova OV et al (2016) Methylovulum psychrotolerans sp. nov., a cold adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum. Int J Syst Evol Microbiol 66(6):2417–2423. https://doi.org/10.1099/ijsem.0.001046

    Article  CAS  PubMed  Google Scholar 

  43. Giroud S, Chery I, Bertile F et al (2019) Lipidomics reveals seasonal shifts in a large-bodied hibernator, the brown bear. Front Physiol 10(APR):389. https://doi.org/10.3389/fphys.2019.00389

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Mendoza D, Pilon M (2019) Control of membrane lipid homeostasis by lipid-bilayer associated sensors: a mechanism conserved from bacteria to humans. Prog Lipid Res 76:100996. https://doi.org/10.1016/j.plipres.2019.100996

    Article  CAS  PubMed  Google Scholar 

  45. He M, Ding NZ (2020) Plant unsaturated fatty acids: multiple roles in stress response. Front Plant Sci 11:562785. https://doi.org/10.3389/fpls.2020.562785

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL (2018) Low-temperature tolerance in land plants: are transcript and membrane responses conserved? Plant Sci 276:73–86. https://doi.org/10.1016/j.plantsci.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  47. Saita EA, De Mendoza D (2015) Thermosensing via transmembrane protein-lipid interactions. Biochim Biophys Acta Biomembr 1848(9):1757–1764. https://doi.org/10.1016/J.BBAMEM.2015.04.005

    Article  CAS  Google Scholar 

  48. Gushchin I, Gordeliy V (2018) Transmembrane signal transduction in two-component systems: piston, scissoring, or helical rotation? BioEssays 40(2):1700197. https://doi.org/10.1002/bies.201700197

    Article  CAS  Google Scholar 

  49. Buschiazzo A, Trajtenberg F (2019) Two-component sensing and regulation: how do histidine kinases talk with response regulators at the molecular level? Annu Rev Microbiol 73:507–528. https://doi.org/10.1146/annurev-micro-091018-054627

    Article  CAS  PubMed  Google Scholar 

  50. Inda ME, Vandenbranden M, Fernández A, De Mendoza D, Ruysschaert JM, Cybulski LE (2014) A lipidmediated conformational switch modulates the thermosensing activity of DesK. Proc Natl Acad Sci U S A 111(9):3579–3584. https://doi.org/10.1073/pnas.1317147111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cybulski LE, Martín M, Mansilla MC, Fernández A, De Mendoza D (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20(17):1539–1544. https://doi.org/10.1016/j.cub.2010.06.074

    Article  PubMed  Google Scholar 

  52. Abriata LA, Albanesi D, Dal Peraro M, De Mendoza D (2017) Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor. Acc Chem Res 50(6):1359–1366. https://doi.org/10.1021/acs.accounts.6b00593

    Article  CAS  PubMed  Google Scholar 

  53. Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist 222(4):1690–1704. https://doi.org/10.1111/nph.15696

    Article  PubMed  Google Scholar 

  54. Lv Y, Hussain MA, Luo D, Tang N (2019) Current understanding of genetic and molecular basis of cold tolerance in rice. Molecular Breeding 39(12):1–18. https://doi.org/10.1007/s11032-019-1073-5

    Article  CAS  Google Scholar 

  55. Cano-Ramirez DL, Carmona-Salazar L, Morales-Cedillo F, Ramírez-Salcedo J, Cahoon EB, Gavilanes-Ruíz M (2021) Plasma membrane fluidity: an environment thermal detector in plants. Cells 10(10):2778. https://doi.org/10.3390/cells10102778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma Y, Dai X, Xu Y et al (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221. https://doi.org/10.1016/j.cell.2015.01.046

    Article  CAS  PubMed  Google Scholar 

  57. Zhang D, Guo X, Xu Y et al (2019) OsCIPK7 point-mutation leads to conformation and kinase-activity change for sensing cold response. J Integr Plant Biol 61(12):1194–1200. https://doi.org/10.1111/jipb.12800

    Article  CAS  PubMed  Google Scholar 

  58. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433. https://doi.org/10.1146/annurev.biochem.75.103004.142723

    Article  CAS  PubMed  Google Scholar 

  59. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013:512840. https://doi.org/10.1155/2013/512840

    Article  PubMed  Google Scholar 

  60. Feller G, Lonhienne T, Deroanne C, Libioulle C, Van Beeumen J, Gerday C (1992) Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267(8). https://doi.org/10.1016/s0021-9258(18)42754-8

  61. D’Amico S, Sohier JS, Feller G (2006) Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic α-amylase. J Mol Biol 358(5):1296–1304. https://doi.org/10.1016/j.jmb.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  62. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208. https://doi.org/10.1038/nrmicro773

    Article  CAS  PubMed  Google Scholar 

  63. Arcus VL, Mulholland AJ (2020) Temperature, dynamics, and enzyme-catalyzed reaction rates. Annu Rev Biophys 49:163–180. https://doi.org/10.1146/annurev-biophys-121219-081520

    Article  CAS  PubMed  Google Scholar 

  64. Daniel RM, Danson MJ (2010) A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochem Sci 35(10). https://doi.org/10.1016/j.tibs.2010.05.001

  65. Isaksen GV, Åqvist J, Brandsdal BO (2014) Protein surface softness is the origin of enzyme cold-adaptation of trypsin. PLoS Comput Biol 10(8):584–591. https://doi.org/10.1371/journal.pcbi.1003813

    Article  CAS  Google Scholar 

  66. Bjelic S, Brandsdal BO, Åqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47(38):10049–10057. https://doi.org/10.1021/bi801177k

    Article  CAS  PubMed  Google Scholar 

  67. Isaksen GV, Åqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci U S A 113(28):7822–7827. https://doi.org/10.1073/pnas.1605237113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Åqvist J (2017) Cold Adaptation of triosephosphate isomerase. Biochemistry 56(32):4169–4176. https://doi.org/10.1021/acs.biochem.7b00523

    Article  CAS  PubMed  Google Scholar 

  69. Sočan J, Isaksen GV, Brandsdal BO, Åqvist J (2019) Towards rational computational engineering of psychrophilic enzymes. Sci Rep 9(1):19147. https://doi.org/10.1038/s41598-019-55697-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arcus VL, Prentice EJ, Hobbs JK et al (2016) On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55(12):1681–1688. https://doi.org/10.1021/acs.biochem.5b01094

    Article  CAS  PubMed  Google Scholar 

  71. Hobbs JK, Jiao W, Easter AD, Parker EJ, Schipper LA, Arcus VL (2013) Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem Biol 8(11):2388–2393. https://doi.org/10.1021/CB4005029/SUPPL_FILE/CB4005029_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  72. Van Der Kamp MW, Prentice EJ, Kraakman KL, Connolly M, Mulholland AJ, Arcus VL (2018) Dynamical origins of heat capacity changes in enzyme-catalysed reactions. Nat Commun 9(1177). https://doi.org/10.1038/s41467-018-03597-y

  73. Russell RJM, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6(3):351–361. https://doi.org/10.1016/s0969-2126(98)00037-9

    Article  CAS  PubMed  Google Scholar 

  74. Paredes DI, Watters K, Pitman DJ, Bystroff C, Dordick JS (2011) Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol 11. https://doi.org/10.1186/1472-6807-11-42

  75. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13(9):11643–11665. https://doi.org/10.3390/ijms130911643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fullana N, Braña V, José Marizcurrena J et al (2017) Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate. AIMS Bioeng 4(3):386–401. https://doi.org/10.3934/bioeng.2017.3.386

    Article  CAS  Google Scholar 

  77. Mandelman D, Ballut L, Wolff DA et al (2019) Structural determinants increasing flexibility confer cold adaptation in psychrophilic phosphoglycerate kinase. Extremophiles 23(5):495–506. https://doi.org/10.1007/s00792-019-01102-x

    Article  CAS  PubMed  Google Scholar 

  78. De MP, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15(5):508–517. https://doi.org/10.1002/EMBR.201338170

    Article  Google Scholar 

  79. Yu H, Zhao Y, Guo C, Gan Y, Huang H (2015) The role of proline substitutions within flexible regions on thermostability of luciferase. Biochim Biophys Acta Proteins Proteom 1854(1):65–72. https://doi.org/10.1016/j.bbapap.2014.10.017

    Article  CAS  Google Scholar 

  80. Parvizpour S, Hussin N, Shamsir MS, Razmara J (2021) Psychrophilic enzymes: structural adaptation, pharmaceutical and industrial applications. Appl Microbiol Biotechnol 105(3):899–907. https://doi.org/10.1007/s00253-020-11074-0

    Article  CAS  PubMed  Google Scholar 

  81. Zhang ZB, Xia YL, Dong GH, Fu YX, Liu SQ (2021) Exploring the cold-adaptation mechanism of serine hydroxymethyltransferase by comparative molecular dynamics simulations. Int J Mol Sci 22(4):1781. https://doi.org/10.3390/ijms22041781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weber MH, Marahiel MA (2003) Bacterial cold shock responses. Sci Prog 86(Pt 1-2):9–75. https://doi.org/10.3184/003685003783238707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166(5):293–300. https://doi.org/10.1007/s002030050386

    Article  CAS  PubMed  Google Scholar 

  84. Heinemann U, Roske Y (2021) Cold-shock domains—abundance, structure, properties, and nucleic-acid binding. Cancers (Basel) 13(2):1–22. https://doi.org/10.3390/CANCERS13020190

    Article  Google Scholar 

  85. Xia B, Ke H, Inouye M (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40(1):179–188. https://doi.org/10.1046/j.1365-2958.2001.02372.x

    Article  CAS  PubMed  Google Scholar 

  86. Faßhauer P, Busche T, Kalinowski J et al (2021) Functional redundancy and specialization of the conserved cold shock proteins in Bacillus subtilis. Microorganisms 9(7):1434. https://doi.org/10.3390/MICROORGANISMS9071434

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sette M, Van Tilborg P, Spurio R, Kaptein R, Paci M, Gualerzi CO, Boelens R (1997) The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif. EMBO Journal 16(6):1436–1443. https://doi.org/10.1093/emboj/16.6.1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bycroft M, Hubbard TJP, Proctor M, Freund SMV, Murzin AG (1997) The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold. Cell 88(2):235–242. https://doi.org/10.1016/S0092-8674(00)81844-9

    Article  CAS  PubMed  Google Scholar 

  89. Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59(11):1902–1913. https://doi.org/10.1007/PL00012513

    Article  CAS  PubMed  Google Scholar 

  90. Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457. https://doi.org/10.1007/s00018-007-6388-4

    Article  CAS  PubMed  Google Scholar 

  91. Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272(1):196–202. https://doi.org/10.1074/jbc.272.1.196

    Article  CAS  PubMed  Google Scholar 

  92. Yamanaka K, Inouye M (2001) Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J Bacteriol 183(9):2808–2816. https://doi.org/10.1128/JB.183.9.2808-2816.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci 97(14):7784–7789. https://doi.org/10.1073/pnas.97.14.7784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Phadtare S, Inouye M, Severinov K (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277(9):7239–7245. https://doi.org/10.1074/jbc.M111496200

    Article  CAS  PubMed  Google Scholar 

  95. Brandi A, Pon CL, Gualerzi CO (1994) Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of HNS. Biochimie 76(10-11):1090–1098. https://doi.org/10.1016/0300-9084(94)90035-3

    Article  CAS  PubMed  Google Scholar 

  96. Yamanaka K, Inouye M (1997) Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol 179(16):5126–5130. https://doi.org/10.1128/jb.179.16.5126-5130.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ray S, Da Costa R, Thakur S, Nandi D (2020) Salmonella typhimurium encoded cold shock protein E is essential for motility and biofilm formation. Microbiology (United Kingdom) 166(5):460–473. https://doi.org/10.1099/mic.0.000900

    Article  CAS  Google Scholar 

  98. Kim J, Ha S, Park W (2018) Expression and deletion analyses of cspE encoding cold-shock protein E in Acinetobacter oleivorans DR1. Res Microbiol 169(4-5):244–253. https://doi.org/10.1016/j.resmic.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  99. Wei W, Sawyer T, Burbank L (2021) Csp1, a Cold shock protein homolog in Xylella fastidiosa influences cell attachment, pili formation, and gene expression. Microbiol Spectr 9(3):e0159121. https://doi.org/10.1128/spectrum.01591-21

    Article  CAS  PubMed  Google Scholar 

  100. Zhou Z, Tang H, Wang W et al (2021) Cell discovery a cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discov 7:15. https://doi.org/10.1038/s41421-021-00246-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wong CMVL, Boo SY, Voo CLY, Zainuddin N, Najimudin N (2019) A comparative transcriptomic analysis provides insights into the cold-adaptation mechanisms of a psychrophilic yeast, Glaciozyma antarctica PI12. Polar Biol 42(3):541–553. https://doi.org/10.1007/s00300-018-02443-7

    Article  Google Scholar 

  102. Mojib N, Andersen DT, Bej AK (2011) Structure and function of a cold shock domain fold protein, CspD, in Janthinobacterium sp. Ant5-2 from East Antarctica. FEMS Microbiol Lett 319(2):106–114. https://doi.org/10.1111/j.1574-6968.2011.02269.x

    Article  CAS  PubMed  Google Scholar 

  103. Ayala-Del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76(7):2304–2312. https://doi.org/10.1128/AEM.02101-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R (2020) Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress. Cell Stress Chaperones 25(6):1025–1032. https://doi.org/10.1007/s12192-020-01139-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bakermans C, Bergholz PW, Ayala-del-Río H, Tiedje J (2009) Genomic insights into cold adaptation of permafrost bacteria. In: Margesin R (ed) Permafrost soils. Soil biology, vol 16. Springer, Berlin, pp 159–168. https://doi.org/10.1007/978-3-540-69371-0_11

    Chapter  Google Scholar 

  106. Nakaminami K, Hill K, Perry SE, Sentoku N, Long JA, Karlson DT (2009) Arabidopsis cold shock domain proteins: Relationships to floral and silique development. J Exp Bot 60(3):1047–1062. https://doi.org/10.1093/jxb/ern351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Triqueneaux G, Velten M, Franzon P, Dautry F, Jacquemin-Sablon H (1999) RNA binding specificity of Unr, a protein with five cold shock domains. Nucleic Acids Res 27(8):1926–1934. https://doi.org/10.1093/nar/27.8.1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shiina T, Shimizu Y (2020) Temperature-dependent alternative splicing of precursor mRNAs and its biological significance: A review focused on post-transcriptional regulation of a cold shock protein gene in hibernating mammals. Int J Mol Sci 21(20):7599. https://doi.org/10.3390/IJMS21207599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu X, Bü Hrer C, Wellmann S (2016) Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 73(20):3839–3859. https://doi.org/10.1007/s00018-016-2253-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Erdemir D, Lee AY, Myerson AS (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42(5):621–629. https://doi.org/10.1021/AR800217X

    Article  CAS  PubMed  Google Scholar 

  111. Mangiagalli M, Brocca S, Orlando M, Lotti M (2020) The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. N Biotechnol 55:5–11. https://doi.org/10.1016/J.NBT.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  112. Białkowska A, Majewska E, Olczak A, Twarda-Clapa A (2020) Ice binding proteins: Diverse biological roles and applications in different types of industry. Biomolecules 10(2):74. https://doi.org/10.3390/biom10020274

    Article  CAS  Google Scholar 

  113. Bar Dolev M, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542. https://doi.org/10.1146/ANNUREV-BIOCHEM-060815-014546

    Article  CAS  PubMed  Google Scholar 

  114. Sun T, Lin FH, Campbell RL, Allingham JS, Davies PL (2014) An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343(6172):795–798. https://doi.org/10.1126/SCIENCE.1247407

    Article  CAS  PubMed  Google Scholar 

  115. Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci 108(18):7363–7367. https://doi.org/10.1073/pnas.1100429108/-/DCSupplemental

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384(6606):285–288. https://doi.org/10.1038/384285a0

    Article  CAS  PubMed  Google Scholar 

  117. Kondo H, Hanada Y, Sugimoto H et al (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci U S A 109(24):9360–9365. https://doi.org/10.1073/PNAS.1121607109/-/DCSUPPLEMENTAL

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kozloff LM, Turner MA, Arellano F (1991) Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J Bacteriol 173(20):6528–6536. https://doi.org/10.1128/JB.173.20.6528-6536.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Phelps P, Giddings TH, Prochoda M, Fall R (1986) Release of cell-free ice nuclei by Erwinia herbicola. J Bacteriol 167(2):496–502. https://doi.org/10.1128/JB.167.2.496-502.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roeters SJ, Golbek TW, Bregnhøj M, Drace T, Alamdari S, Roseboom W, Kramer G, Šantl-Temkiv T, Finster K, Pfaendtner J, Woutersen S, Boesen T, Weidner T (2021) Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water. Nat Commun 12(1):1183. https://doi.org/10.1038/s41467-021-21349-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lindow SE, Arny DC, Upper CD (1982) Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol 70(4):1084–1089. https://doi.org/10.1104/PP.70.4.1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Han YJ, Song HJ, Lee CW et al (2017) Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments. Int J Biol Macromol 94(Pt A):634–641. https://doi.org/10.1016/J.IJBIOMAC.2016.10.062

    Article  CAS  PubMed  Google Scholar 

  123. Martis BS, Forquet R, Reverchon S, Nasser W, Meyer S (2019) DNA supercoiling: an ancestral regulator of gene expression in pathogenic bacteria? Comput Struct Biotechnol J 17:1047–1055. https://doi.org/10.1016/J.CSBJ.2019.07.013

    Article  Google Scholar 

  124. Hatfield GW, Benham CJ (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 36:175–203. https://doi.org/10.1146/ANNUREV.GENET.36.032902.111815

    Article  CAS  PubMed  Google Scholar 

  125. Krispin O, Allmansberger R (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett 134(2–3):129–135. https://doi.org/10.1111/J.1574-6968.1995.TB07926.X

    Article  CAS  PubMed  Google Scholar 

  126. Mizushima T, Kataoka K, Ogata Y, Inoue RI, Sekimizu K (1997) Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol 23(2):381–386. https://doi.org/10.1046/J.1365-2958.1997.2181582.X

    Article  CAS  PubMed  Google Scholar 

  127. Prakash JSS, Sinetova M, Zorina A et al (2009) DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Mol Biosyst 5(12):1904–1912. https://doi.org/10.1039/B903022K

    Article  CAS  PubMed  Google Scholar 

  128. Wang J-Y, Syvanen M (1992) DNA twist as a transcriptional sensor for environmental changes. Mol Microbiol 6(14):1861–1866. https://doi.org/10.1111/j.1365-2958.1992.tb01358.x

    Article  CAS  PubMed  Google Scholar 

  129. Forquet R, Pineau M, Nasser W, Reverchon S, Meyer S (2021) Role of the discriminator sequence in the supercoiling sensitivity of bacterial promoters. mSystems 6(4):e0097821. https://doi.org/10.1128/mSystems

    Article  PubMed  Google Scholar 

  130. Singh AK, Pindi PK, Dube S, Sundareswaran VR, Shivaji S (2009) Importance of trmE for growth of the psychrophile Pseudomonas syringae at low temperatures. Appl Environ Microbiol 75(13):4419–4426. https://doi.org/10.1128/AEM.01523-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Janiyani KL, Ray MK (2002) Cloning, sequencing, and expression of the cold-inducible hutU gene from the antarctic psychrotrophic bacterium Pseudomonas syringae. Appl Environ Microbiol 68(1):1–10. https://doi.org/10.1128/AEM.68.1.1-10.2002/ASSET/EF17ED0A-B9C6-49CB-8D11-18054E5BF33F/ASSETS/GRAPHIC/AM0120806006.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang N, Yamanaka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181(5):1603–1609. https://doi.org/10.1128/JB.181.5.1603-1609.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nakashima K, Kanamaru K, Mizuno T, Horikoshi K (1996) A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178(10):2994–2997. https://doi.org/10.1128/JB.178.10.2994-2997.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee SJ, Xie A, Jiang W, Etchegaray J -P, Jones PG, Inouye M (1994) Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11(5):833–839. https://doi.org/10.1111/J.1365-2958.1994.TB00361.X

    Article  CAS  PubMed  Google Scholar 

  135. Mitta M, Fang L, Inouye M (1997) Deletion analysis of cspA of Escherichia coli: Requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26(2):321–335. https://doi.org/10.1046/J.1365-2958.1997.5771943.X

    Article  CAS  PubMed  Google Scholar 

  136. Goldenberg D, Azar I, Oppenheim AB, Brandi A, Pon CL, Gualerzi CO (1997) Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol Gen Genet 256(3):282–290. https://doi.org/10.1007/S004380050571/METRICS

    Article  CAS  PubMed  Google Scholar 

  137. Singh AK, Sad K, Singh SK, Shivaji S (2014) Regulation of gene expression at low temperature: role of cold-inducible promoters. Microbiology (Reading) 160(Pt 7):1291–1297. https://doi.org/10.1099/MIC.0.077594-0

    Article  CAS  PubMed  Google Scholar 

  138. Duilio A, Madonna S, Tutino ML, Pirozzi M, Sannia G, Marino G (2004) Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8(2):125–132. https://doi.org/10.1007/S00792-003-0371-2/METRICS

    Article  CAS  PubMed  Google Scholar 

  139. Österberg S, Del P-S, Shingler V (2011) Regulation of alternative sigma factor use. Annu Rev Microbiol 65:37–55. https://doi.org/10.1146/ANNUREV.MICRO.112408.134219

    Article  PubMed  Google Scholar 

  140. Helmann JD (2019) Where to begin? Sigma factors and the selectivity of transcription initiation in bacteria. Mol Microbiol 112(2):335–347. https://doi.org/10.1111/MMI.14309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rodriguez Ayala F, Bartolini M, Grau R (2020) The stress-responsive alternative sigma factor SigB of Bacillus subtilis and its relatives: an old friend with new functions. Front Microbiol 11:1761. https://doi.org/10.3389/fmicb.2020.01761

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hecker M, Völker U (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91. https://doi.org/10.1016/S0065-2911(01)44011-2

    Article  CAS  PubMed  Google Scholar 

  143. Price CW, Fawcett P, Cérémonie H, Su N, Murphy CK, Youngman P (2001) Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41(4):757–774. https://doi.org/10.1046/J.1365-2958.2001.02534.X

    Article  CAS  PubMed  Google Scholar 

  144. Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U (2003) Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185(15):4305–4314. https://doi.org/10.1128/JB.185.15.4305-4314.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wiegeshoff F, Beckering CL, Debarbouille M, Marahiel MA (2006) Sigma L is important for cold shock adaptation of Bacillus subtilis. J Bacteriol 188(8):3130–3133. https://doi.org/10.1128/JB.188.8.3130-3133.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Raimann E, Schmid B, Stephan R, Tasara T (2009) The alternative sigma factor σL of L. monocytogenes promotes growth under diverse environmental stresses. Foodborne Pathog Dis 6(5):583–591. https://doi.org/10.1089/FPD.2008.0248

    Article  CAS  PubMed  Google Scholar 

  147. Mattila M, Somervuo P, Korkeala H, Stephan R, Tasara T (2020) Transcriptomic and phenotypic analyses of the sigma B-dependent characteristics and the synergism between sigma B and sigma L in Listeria monocytogenes EGD-e. Microorganisms 8(11):1–19. https://doi.org/10.3390/MICROORGANISMS8111644

    Article  Google Scholar 

  148. White-Ziegler CA, Um S, Pérez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23 °C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology (N Y) 154(1):148–166. https://doi.org/10.1099/MIC.0.2007/012021-0

    Article  CAS  Google Scholar 

  149. Tomatis PE, Schütz M, Umudumov E, Plückthun A (2019) Mutations in sigma 70 transcription factor improves expression of functional eukaryotic membrane proteins in Escherichia coli. Sci Rep 9(1):1–14. https://doi.org/10.1038/s41598-019-39492-9

    Article  CAS  Google Scholar 

  150. Palonen E, Lindström M, Somervuo P, Korkeala H (2013) Alternative sigma factor σe has an important role in stress tolerance of Yersinia pseudotuberculosis ip32953. Appl Environ Microbiol 79(19):5970–5977. https://doi.org/10.1128/AEM.01891-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rennella E, TomᡠT, Sára T et al (2017) RNA binding and chaperone activity of the E. coli cold-shock protein CspA. Nucleic Acids Res 45(7):4255–4268. https://doi.org/10.1093/nar/gkx044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zeeb M, Max KE, Weininger U, Lö C, Sticht H, Balbach J (2006) Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution. Nucleic Acids Res 34(16):4561–4571. https://doi.org/10.1093/nar/gkl376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli (gene regulation/stress response/heat shock response). Proc Nati Acad Sci USA 87:283–287. https://www.pnas.org. Accessed 31 Jan 2023

    Article  CAS  Google Scholar 

  154. Giuliodori AM, Di Pietro F, Marzi S et al (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37(1):21–33. https://doi.org/10.1016/J.MOLCEL.2009.11.033

    Article  CAS  PubMed  Google Scholar 

  155. Giuliodori AM, Fabbretti A, Gualerzi C (2019) Cold-responsive regions of paradigm cold-shock and non-coldshock mRNAs responsible for cold shock translational bias. Int J Mol Sci 20(3):457. https://doi.org/10.3390/IJMS20030457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jiang W, Fang L, Inouye M (1996) The role of the 5’-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J Bacteriol 178(16):4919–4925. https://doi.org/10.1128/JB.178.16.4919-4925.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fang L, Hou Y, Inouye M (1998) Role of the cold-box region in the 5’ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180(1):90–95. https://doi.org/10.1128/JB.180.1.90-95.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Feng Y, Huang H, Liao J, Cohen SN (2001) Escherichia coli Poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by Polynucleotide Phosphorylase and RNase E. J Biol Chem 276(34):31651–31656. https://doi.org/10.1074/jbc.M102855200

    Article  CAS  PubMed  Google Scholar 

  159. Górna MW, Carpousis AJ, Luisi BF (2012) From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q Rev Biophys 45(2):105–145. https://doi.org/10.1017/S003358351100014X

    Article  CAS  PubMed  Google Scholar 

  160. Iost I, Bizebard T (1829) Dreyfus M 2013 Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. Biochim Biophys Acta (BBA) - Gene Regul Mech 8:866–877. https://doi.org/10.1016/J.BBAGRM.2013.01.012

    Article  Google Scholar 

  161. Iost I, Dreyfus M (2006) DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34(15):4189. https://doi.org/10.1093/NAR/GKL500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Khemici V, Toesca I, Poljak L, Vanzo NF, Carpousis AJ (2004) The RNase E of Escherichia coli has at least two binding sites for DEAD-box RNA helicases: functional replacement of RhlB by RhlE. Mol Microbiol 54(5):1422–1430. https://doi.org/10.1111/J.1365-2958.2004.04361.X

    Article  CAS  PubMed  Google Scholar 

  163. Lu J, Aoki H, Ganoza MC (1999) Molecular characterization of a prokaryotic translation factor homologous to the eukaryotic initiation factor eIF4A. Int J Biochem Cell Biol 31(1):215–229. https://doi.org/10.1016/S1357-2725(98)00142-3

    Article  CAS  PubMed  Google Scholar 

  164. Cartier G, Lorieux F, Allemand F, Dreyfus M, Bizebard T (2010) Cold adaptation in DEAD-box proteins. Biochemistry 49(12):2636–2646. https://doi.org/10.1021/BI902082D

    Article  CAS  PubMed  Google Scholar 

  165. Prud’homme-Géńreux A, Beran RK, Iost I, Ramey CS, Mackie GA, Simons RW (2004) Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: Evidence for a “cold shock degradosome.” Mol Microbiol 54(5):1409–1421. https://doi.org/10.1111/J.1365-2958.2004.04360.X

    Article  Google Scholar 

  166. Ojha S, Jain C (2020) Dual-level autoregulation of the E. coli DeaD RNA helicase via mRNA stability and Rhodependent transcription termination. RNA 26(9):1160–1169. https://doi.org/10.1261/RNA.074112.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kushner SR (2015) Polyadenylation in E. coli: a 20 year odyssey. RNA 21(4):673. https://doi.org/10.1261/RNA.049700.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19(2):343–356. https://doi.org/10.1046/J.1365-2958.1996.380907.X

    Article  CAS  PubMed  Google Scholar 

  169. Goverde RLJ, Huis In’t Veld JHJ, Kusters JG, Mooi FR (1998) The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5°C). Mol Microbiol 28(3):555–569. https://doi.org/10.1046/J.1365-2958.1998.00816.X

    Article  CAS  PubMed  Google Scholar 

  170. Zangrossi S, Briani F, Ghisotti D, Regonesi ME, Tortora P, Dehò G (2000) Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol Microbiol 36(6):1470–1480. https://doi.org/10.1046/J.1365-2958.2000.01971.X

    Article  CAS  PubMed  Google Scholar 

  171. Neuhaus K, Rapposch S, Francis KP, Scherer S (2000) Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol 182(11):3285–3288. https://doi.org/10.1128/JB.182.11.3285-3288.2000/ASSET/34E7A226-9556-46AF-AE21-0A180FD0D5A6/ASSETS/GRAPHIC/JB1101330003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Awano N, Inouye M, Phadtare S (2008) RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II. J Bacteriol 190(17):5924–5933. https://doi.org/10.1128/JB.00500-08/ASSET/0C1C42BE-91F4-42B4-9EA4-BFACB8F74475/ASSETS/GRAPHIC/ZJB0170880780007.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fontaine F, Gasiorowski E, Gracia C et al (2016) The small RNA SraG participates in PNPase homeostasis. RNA 22(10):1560–1573. https://doi.org/10.1261/RNA.055236.115/-/DC1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Carpousis AJ, The RNA (2007) Degradosome of Escherichia coli: An mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87. https://doi.org/10.1146/ANNUREV.MICRO.61.080706.093440

    Article  CAS  PubMed  Google Scholar 

  175. Briani F, Del Favero M, Capizzuto R et al (2007) Genetic analysis of polynucleotide phosphorylase structure and functions. Biochimie 89(1):145–157. https://doi.org/10.1016/j.biochi.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  176. Cairrão F, Cruz A, Mori H, Arraiano CM (2003) Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 50(4):1349–1360. https://doi.org/10.1046/J.1365-2958.2003.03766.X

    Article  PubMed  Google Scholar 

  177. Chen G, Deutscher MP (2010) RNase R is a highly unstable protein regulated by growth phase and stress. RNA 16(4):667–672. https://doi.org/10.1261/rna.1981010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Awano N, Rajagopal V, Arbing M, Patel S, Hunt J, Inouye M, Phadtare S (2010) Escherichia coli RNase R has dual activities, helicase and RNase. J Bacteriol 192(5):1344–1352. https://doi.org/10.1128/JB.01368-09

    Article  CAS  PubMed  Google Scholar 

  179. Zhang Y, Burkhardt DH, Rouskin S, Li GW, Weissman JS, Gross CA (2018) A stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Mol Cell 70(2):274-286.e7. https://doi.org/10.1016/J.MOLCEL.2018.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Giuliodori AM, Brandi A, Gualerzi CO, Pon CL (2004) Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10(2):265–276. https://doi.org/10.1261/RNA.5164904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Giangrossi M, Brandi A, Giuliodori AM, Gualerzi CO, Pon CL (2007) Cold-shock-induced de novo transcription and translation of infA and role of IF1 during cold adaptation. Mol Microbiol 64(3):807–821. https://doi.org/10.1111/J.1365-2958.2007.05699.X

    Article  CAS  PubMed  Google Scholar 

  182. Gualerzi CO, Giuliodori AM, Brandi A, Di Pietro F, Piersimoni L, Fabbretti A, Pon CL (2011) Translation initiation at the root of the cold-shock translational bias. In: Rodnina MV, Wintermeyer W, Green R (eds) Ribosomes. Springer, Vienna, pp 143–154. https://doi.org/10.1007/978-3-7091-0215-2_12

    Chapter  Google Scholar 

  183. Piersimoni L, Giangrossi M, Marchi P, Brandi A, Gualerzi CO, Pon CL (2016) De novo synthesis and assembly of rRNA into ribosomal subunits during cold acclimation in Escherichia coli. J Mol Biol 428(8):1558–1573. https://doi.org/10.1016/J.JMB.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  184. Agafonov DE, Kolb VA, Spirin AS (2001) Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage. EMBO Rep 2(5):399–402. https://doi.org/10.1093/EMBO-REPORTS/KVE091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Agafonov DE, Kolb VA, Nazimov IV, Spirin AS (1999) A protein residing at the subunit interface of the bacterial ribosome. Proc Natl Acad Sci U S A 96(22):12345–12349. https://doi.org/10.1073/PNAS.96.22.12345/ASSET/C510E7B2-FC17-478C-86DD-27B7CAB95EAD/ASSETS/GRAPHIC/PQ2193612006.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xia B, Ke H, Shinde U, Inouye M (2003) The role of RbfA in 16 S rRNA processing and cell growth at low temperature in Escherichia coli. J Mol Biol 332(3):575–584. https://doi.org/10.1016/S0022-2836(03)00953-7

    Article  CAS  PubMed  Google Scholar 

  187. Maksimova EM, Korepanov AP, Kravchenko OV et al (2021) Rbfa is involved in two important stages of 30s subunit assembly: Formation of the central pseudoknot and docking of helix 44 to the decoding center. Int J Mol Sci 22(11):6140. https://doi.org/10.3390/IJMS22116140/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Datta PP, Wilson DN, Kawazoe M et al (2007) Structural aspects of RbfA action during small ribosomal subunit assembly. Mol Cell 28(3):434–445. https://doi.org/10.1016/J.MOLCEL.2007.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sharma IM, Woodson SA (2020) RbfA and IF3 couple ribosome biogenesis and translation initiation to increase stress tolerance. Nucleic Acids Res 48(1):359–372. https://doi.org/10.1093/NAR/GKZ1065

    Article  CAS  PubMed  Google Scholar 

  190. Chattopadhyay MK (2002) Bacterial cryoprotectants. Resonance 7(11):59–63. https://doi.org/10.1007/BF02868199

    Article  CAS  Google Scholar 

  191. Dawson HM, Heal KR, Boysen AK, Carlson LT, Ingalls AE, Young JN (2020) Potential of temperature and salinity-driven shifts in diatom compatible solute concentrations to impact biogeochemical cycling within sea ice. Elementa: Science of the Anthropocene 8:25. https://doi.org/10.1525/ELEMENTA.421/112775

    Article  Google Scholar 

  192. Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176(2):426–431. https://doi.org/10.1128/JB.176.2.426-431.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ma Y, Wang Q, Gao X, Zhang Y (2017) Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum. J Microbiol 55(1):44–55. https://doi.org/10.1007/S12275-017-6370-2

    Article  CAS  PubMed  Google Scholar 

  194. Hayes MA, Shor AC, Jesse A, Miller C, Kennedy JP, Feller I (2020) The role of glycine betaine in range expansions; protecting mangroves against extreme freeze events. J Ecol 108(1):61–69. https://doi.org/10.1111/1365-2745.13243

    Article  CAS  Google Scholar 

  195. Torstensson A, Young JN, Carlson LT, Ingalls AE, Deming JW (2019) Use of exogenous glycine betaine and its precursor choline as osmoprotectants in Antarctic sea-ice diatoms. J Phycol 55(3):663–675. https://doi.org/10.1111/JPY.12839

    Article  CAS  PubMed  Google Scholar 

  196. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216. https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006

    Article  CAS  Google Scholar 

  197. Bremer E, Krämer R (2019) Responses of Microorganisms to Osmotic Stress. Annu Rev Microbiol 73:313–334. https://doi.org/10.1146/ANNUREV-MICRO-020518-115504

    Article  CAS  PubMed  Google Scholar 

  198. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466. https://doi.org/10.4161/PSB.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Savouré A, Hua XJ, Bertauche N, Van Montagu M, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254(1):104–109. https://doi.org/10.1007/S004380050397/METRICS

    Article  PubMed  Google Scholar 

  200. Patton AJ, Cunningham SM, Volenec JJ, Reicher ZJ (2007) Differences in freeze tolerance of Zoysiagrasses: II. Carbohydrate and proline accumulation. Crop Sci 47(5):2170–2181. https://doi.org/10.2135/CROPSCI2006.12.0784

    Article  CAS  Google Scholar 

  201. Wang W, Wang X, Lv Z et al (2022) Effects of cold and salicylic acid priming on free proline and sucrose accumulation in winter wheat under freezing stress. J Plant Growth Regul 41(6):2171–2184. https://doi.org/10.1007/S00344-021-10412-4/METRICS

    Article  CAS  Google Scholar 

  202. Misener SR, Chen CP, Walker VK (2001) Cold tolerance and proline metabolic gene expression in Drosophila melanogaster. J Insect Physiol 47(4–5):393–400. https://doi.org/10.1016/S0022-1910(00)00141-4

    Article  CAS  PubMed  Google Scholar 

  203. Chattopadhyay MK, Kern R, Mistou MY, Dandekar AM, Uratsu SL, Richarme G (2004) The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42°C. J Bacteriol 186(23):8149–8152. https://doi.org/10.1128/JB.186.23.8149-8152.2004/ASSET/1CA2A937-6E77-4133-A4D3-5E929E914F05/ASSETS/GRAPHIC/ZJB0230442350003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99(15):9727–9732. https://doi.org/10.1073/PNAS.142314099/ASSET/433BE349-EC53-4A39-89B6-6E3889E17CBD/ASSETS/GRAPHIC/PQ1423140005.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Seybold AC, Wharton DA, Thorne MAS, Marshall CJ (2017) Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Panagrolaimus sp. DAW1. Biol Open 6(12):1953–1959. https://doi.org/10.1242/bio.023341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Morel MA, Ubalde MC, Olivera-Bravo S, Callejas C, Gill PR, Castro-Sowinski S (2009) Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. FEMS Microbiol Lett 291(2):162–168. https://doi.org/10.1111/j.1574-6968.2008.01444.x

    Article  CAS  PubMed  Google Scholar 

  207. Casillo A, Lanzetta R, Parrilli M, Corsaro MM (2018) Exopolysaccharides from marine and marine extremophilic bacteria: Structures, properties, ecological roles and applications. Mar Drugs 16(2):69. https://doi.org/10.3390/MD16020069

    Article  PubMed  PubMed Central  Google Scholar 

  208. Deming JW, Young JN (2017) The role of exopolysaccharides in microbial adaptation to cold habitats. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology, Second edn. Springer International Publishing, pp 259–284. https://doi.org/10.1007/978-3-319-57057-0_12/COVER

    Chapter  Google Scholar 

  209. Bhagat N, Raghav M, Dubey S, Bedi N (2021) Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. J Microbiol Biotechnol 31(8):1045–1059. https://doi.org/10.4014/JMB.2105.05009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Casillo A, Fabozzi A, Russo Krauss I et al (2021) Physicochemical approach to understanding the structure, conformation, and activity of mannan polysaccharides. Biomacromol 22(4):1445–1457. https://doi.org/10.1021/ACS.BIOMAC.0C01659/ASSET/IMAGES/LARGE/BM0C01659_0010.JPEG

    Article  CAS  Google Scholar 

  211. Kumar A, Mukhia S, Kumar R (2022) Production, characterisation, and application of exopolysaccharide extracted from a glacier bacterium Mucilaginibacter sp. ERMR7:07. Process Biochem 113:27–36. https://doi.org/10.1016/J.PROCBIO.2021.12.018

    Article  CAS  Google Scholar 

  212. Lo Giudice A, Poli A, Finore I, Rizzo C (2020) Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications. Appl Microbiol Biotechnol 104(7):2923–2934. https://doi.org/10.1007/S00253-020-10448-8/METRICS

    Article  CAS  PubMed  Google Scholar 

  213. Zhao ZD, Yang WZ, Gao C et al (2017) A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci U S A 114(8):2042–2047. https://doi.org/10.1073/PNAS.1616255114/SUPPL_FILE/PNAS.1616255114.SAPP.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Goodpaster BH, Sparks LM (2017) Metabolic flexibility in health and disease. Cell Metab 25(5):1027–1036. https://doi.org/10.1016/J.CMET.2017.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tattersall GJ, Sinclair BJ, Withers PC et al (2012) Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr Physiol 2(3):2151–2202. https://doi.org/10.1002/CPHY.C110055

    Article  PubMed  Google Scholar 

  216. Wolff JO, Lidicker WZ (1981) Communal winter nesting and food sharing in Taiga Voles. Behav Ecol Sociobiol 9(4):237–240. https://doi.org/10.1007/BF00299877/METRICS

    Article  Google Scholar 

  217. Gilbert C, McCafferty D, Le Maho Y et al (2010) One for all and all for one: the energetic benefits of huddling in endotherms. Biol Rev 85(3):545–569. https://doi.org/10.1111/J.1469-185X.2009.00115.X

    Article  PubMed  Google Scholar 

  218. Castellani JW, Young AJ (2016) Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton Neurosci 196:63–74. https://doi.org/10.1016/J.AUTNEU.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  219. Greaney JL, Alexander LM, Kenney WL (2015) Sympathetic control of reflex cutaneous vasoconstriction in human aging. J Appl Physiol (1985) 119(7):771–782. https://doi.org/10.1152/JAPPLPHYSIOL.00527.2015

    Article  PubMed  Google Scholar 

  220. Castellani JW, Young AJ, Sawka MN, Pandolf KB (1998) Human thermoregulatory responses during serial cold-water immersions. J Appl Physiol (1985) 85(1):204–209. https://doi.org/10.1152/JAPPL.1998.85.1.204

    Article  CAS  PubMed  Google Scholar 

  221. Wijers SLJ, Saris WHM, Van Marken Lichtenbelt WD (2009) Recent advances in adaptive thermogenesis: potential implications for the treatment of obesity. Obes Rev 10(2):218–226. https://doi.org/10.1111/J.1467-789X.2008.00538.X

    Article  CAS  PubMed  Google Scholar 

  222. van Marken Lichtenbelt WD, Daanen HAM (2003) Cold-induced metabolism. Curr Opin Clin Nutr Metab Care 6(4):469–475. https://doi.org/10.1097/01.MCO.0000078992.96795.5F

    Article  PubMed  Google Scholar 

  223. Nakamura K, Morrison SF (2011) Central efferent pathways for cold-defensive and febrile shivering. J Physiol 589(14):3641–3658. https://doi.org/10.1113/JPHYSIOL.2011.210047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Coolbaugh CL, Damon BM, Bush EC, Welch B, Towse TF (2019) Cold exposure induces dynamic, heterogeneous alterations in human brown adipose tissue lipid content. Sci Rep 9:13600. https://doi.org/10.1038/s41598-019-49936-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Weber JM, Haman F (2005) Fuel selection in shivering humans. Acta Physiol Scand 184(4):319–329. https://doi.org/10.1111/J.1365-201X.2005.01465.X

    Article  CAS  PubMed  Google Scholar 

  226. Tansey EA, Johnson CD (2015) Recent advances in thermoregulation. Adv Physiol Educ 39(3):139–148. https://doi.org/10.1152/ADVAN.00126.2014

    Article  PubMed  Google Scholar 

  227. Chaplin G, Jablonski NG, Sussman RW, Kelley EA (2014) The role of piloerection in primate thermoregulation. Folia Primatol 85:1–17. https://doi.org/10.1159/000355007

    Article  Google Scholar 

  228. Cypess AM, Kahn CR (2010) The Role and Importance of Brown Adipose Tissue in Energy Homeostasis. Curr Opin Pediatr 22(4):478–484. https://doi.org/10.1097/MOP.0b013e32833a8d6e

    Article  PubMed  PubMed Central  Google Scholar 

  229. Betz MJ, Enerbäck S (2015) Human brown adipose tissue: what we have learned so far. Diabetes 64:2352–2360. https://doi.org/10.2337/db15-0146

    Article  CAS  PubMed  Google Scholar 

  230. Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517. https://doi.org/10.1056/NEJMOA0810780/SUPPL_FILE/NEJM_CYPESS_1509SA1.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Brychta RJ, Chen KY (2017) Cold-induced thermogenesis in humans. Eur J Clin Nutr 71(3):345–352. https://doi.org/10.1038/ejcn.2016.223

    Article  CAS  PubMed  Google Scholar 

  232. Chouchani ET, Kajimura S (2019) Metabolic adaptation and maladaptation in adipose tissue. Nat Metab 1(2):189–200. https://doi.org/10.1038/S42255-018-0021-8

    Article  PubMed  PubMed Central  Google Scholar 

  233. Cypess AM, Kahn CR (2010) Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 17(2):143. https://doi.org/10.1097/MED.0B013E328337A81F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chang SH, Song NJ, Choi JH, Yun UJ, Park KW (2019) Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obes Rev 20(2):241–251. https://doi.org/10.1111/OBR.12796

    Article  CAS  PubMed  Google Scholar 

  235. Nedergaard J, Ricquier D, Kozak LP (2005) Uncoupling proteins: current status and therapeutic prospects. EMBO Rep 6(10):917–921. https://doi.org/10.1038/SJ.EMBOR.7400532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ishibashi J, Seale P (2015) Functions of Prdm16 in thermogenic fat cells. Temperature 2(1):65–72. https://doi.org/10.4161/23328940.2014.974444

    Article  Google Scholar 

  237. Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol (Lausanne) 9:447. https://doi.org/10.3389/fendo.2018.00447

    Article  PubMed  Google Scholar 

  238. Chouchani ET, Kazak L, Spiegelman BM (2019) New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab 29(1):27–37. https://doi.org/10.1016/J.CMET.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  239. Mottillo EP, Ramseyer VD, Granneman JG (2018) SERCA2b cycles Its way to UCP1-independent thermogenesis in beige fat. Cell Metab 27(1):7–9. https://doi.org/10.1016/j.cmet.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  240. Ikeda K, Yamada T (2020) UCP1 Dependent and independent thermogenesis in brown and beige adipocytes. Front Endocrinol (Lausanne) 11:498. https://doi.org/10.3389/fendo.2020.00498

    Article  PubMed  Google Scholar 

  241. Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS (2022) ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord 23(1):121–131. https://doi.org/10.1007/S11154-021-09690-W/FIGURES/2

    Article  CAS  PubMed  Google Scholar 

  242. Periasamy M, Maurya SK, Sahoo SK, Singh S, Reis FCG, Bal NC (2017) Role of SERCA pump in muscle thermogenesis and metabolism. Compr Physiol 7(3):879–890. https://doi.org/10.1002/CPHY.C160030

    Article  PubMed  Google Scholar 

  243. Fuller-Jackson JP, Henry BA (2018) Adipose and skeletal muscle thermogenesis: studies from large animals. J Endocrinol 237(3):R99–R115. https://doi.org/10.1530/JOE-18-0090

    Article  CAS  PubMed  Google Scholar 

  244. Oeckl J, Janovska P, Adamcova K, Bardova K, Brunner S, Dieckmann S, Ecker J, Fromme T, Funda J, Gantert T, Giansanti P, Hidrobo MS, Kuda O, Kuster B, Li Y, Pohl R, Schmitt S, Schweizer S, Zischka H et al (2022) Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Mol Metab 61:101499. https://doi.org/10.1016/J.MOLMET.2022.101499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Blondin DP, Frisch F, Phoenix S et al (2017) Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metab 25(2):438–447. https://doi.org/10.1016/j.cmet.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  246. Reshef L, Olswang Y, Cassuto H et al (2003) Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 278(33):30413–30416. https://doi.org/10.1074/JBC.R300017200

    Article  CAS  PubMed  Google Scholar 

  247. Ikeda K, Kang Q, Yoneshiro T et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465. https://doi.org/10.1038/NM.4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Autry JM, Thomas DD, Espinoza-Fonseca LM (2016) Sarcolipin promotes uncoupling of the SERCA Ca2+ pump by inducing a structural rearrangement in the energy-transduction domain. Biochemistry 55(44):6083–6086. https://doi.org/10.1021/ACS.BIOCHEM.6B00728

    Article  CAS  PubMed  Google Scholar 

  249. Rahbani JF, Roesler A, Hussain MF et al (2021) Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 590(7846):480–485. https://doi.org/10.1038/s41586-021-03221-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sun Y, Rahbani JF, Jedrychowski MP et al (2021) Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 593(7860):580–585. https://doi.org/10.1038/s41586-021-03533-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yau WW, Wong KA, Zhou J, Thimmukonda NK, Wu Y, Bay B-H, Singh BK, Yen PM (2021) Chronic cold exposure induces autophagy to promote fatty acid oxidation, mitochondrial turnover, and thermogenesis in brown adipose tissue. iScience 24(5):102434. https://doi.org/10.1016/J.ISCI.2021.102434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Martinez-Lopez N, Garcia-Macia M, Sahu S et al (2016) Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 23(1):113–127. https://doi.org/10.1016/J.CMET.2015.10.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Basic Sciences Development Program (PEDECIBA, Programa de Desarrollo de las Ciencias Básicas). AR, CV, AE, CCh and SCS are members of the SNI-ANII (Sistema Nacional de Investigadores – Agencia Nacional de Investigación e Innovación).

Author information

Authors and Affiliations

Authors

Contributions

Ana Ramón wrote the section “Which strategies lead to the specific induction of cold-shock and cold adaptation genes?” and was involved in the edition and adaptation of all sections. Carolina Villadóniga summarized the information regarding the thermodynamic parameters involved in cold adaptation. Adriana Esteves described the cellular membranes and their changes; in addition, she drew some figures. Cora Chalar summarized the available information about cold adaptation in mammals. Susana Castro-Sowinski wrote the rest of the sections, edited the text, organized sections and drew some figures.

Corresponding author

Correspondence to Susana Castro-Sowinski.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors consented to the publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Carlos Rafael Mendes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramón, A., Esteves, A., Villadóniga, C. et al. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 54, 2259–2287 (2023). https://doi.org/10.1007/s42770-023-01057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01057-4

Keywords