Skip to main content

Advertisement

Log in

Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biofuels are expected to play a major role in reducing carbon emissions in the aviation sector globally. Farnesane (“2,6,10-trimethyldodecane”) is a biofuel derived from the synthesized iso-paraffin route wich can be blended with jet fuel; however, the microbial behavior in farnesane/jet fuel blends remains unknown. The chemical and biological stability of blends should be investigated to ensure they meet the quality requirements for aviation fuels. This work aimed at evaluating the behavior of two fungi Hormoconis resinae (F089) and Exophiala phaeomuriformis (UFRGS Q4.2) in jet fuel, farnesane, and in 10% farnesane blend during simulated storage. Microcosms (150-mL flasks) were assembled with and without fungi containing Bushnell & Haas mineral medium for 28 days at a temperature of 20±2°C. The fungal growth (biomass), pH, surface tension, and changes in the fuel’s hydrocarbon chains were evaluated. This study revealed thatthe treatment containing H. resinae showed a biomass of 19 mg, 12 mg, and 2 mg for jet fuel, blend, and farnesane respectively. The pH was reduced from 7.2 to 4.3 observed in jet fuel treatment The degradation results showed that compounds with carbon chains between C9 and C11, in jet fuel, and blend treatments were preferably degraded. The highest biomass (70.9 mg) produced by E. phaeomuriformis was in 10% farnesane blend, after 21 days. However, no significant decrease was observed on pH and surface tension measurements across the treatments as well as on the hydrocarbons when compared to the controls. This study revealed that farnesane neither inhibited nor promoted greater growth on both microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chiaramonti D, Talluri G, Scarlat N et al (2021) The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: a meta-analysis review of published scenarios. Renew Sustain Energy Rev 139:110715. https://doi.org/10.1016/j.rser.2021.110715

    Article  Google Scholar 

  2. Heyne J, Rauch B, Clerck PL et al (2021) Sustainable aviation fuel prescreening tools and procedures. Fuel 290:120004. https://doi.org/10.1016/j.fuel.2020.120004

    Article  CAS  Google Scholar 

  3. Hu D, Lin W, Zeng J et al (2020) (2020) Profiling the microbial contamination in aviation fuel from an airport. Biofouling 35:856–869. https://doi.org/10.1080/08927014.2019.1671977

    Article  CAS  Google Scholar 

  4. Ilha BKV, Santos LR, Santos LA et al (2019) Equações lineraes e não lineares para prever o comportamento de propriedades físico-químicas de combustível de aviação misturados com Bioquerosene Drop In alternativo. QuímicaNova 42:1–19. https://doi.org/10.21577/0100-4042.20170302

    Article  CAS  Google Scholar 

  5. Brown LM, McCombe JP, Vangness MD et al (2010) Community dynamics and phylogenetics of bacteria fueling Jet A and JP-8 aviation fuel. Int Biodeter Biodegr 64:253–261. https://doi.org/10.1016/j.ibiod.2010.01.008

    Article  CAS  Google Scholar 

  6. Krohn I, Bergmann L, Qi M et al (2021) Deep (Meta) genomics and (Meta) transcriptome analyses of fungal and bacteria consortia from aircraft tanks and kerosene identify key genes in fuel and tank corrosion. Front Microbiol 12:722250. https://doi.org/10.3389/fmicb.2021.722259

    Article  Google Scholar 

  7. Martin-Sanchez PM, Gorbushina AA, Kunte HJ et al (2016) A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae. Biofouling 32:635–644. https://doi.org/10.1080/08927014.2016.1177515

    Article  CAS  PubMed  Google Scholar 

  8. Passman FJ (2013) Microbial contamination and its control in fuels and fuel systems since1980- a review. Int Biodeter Biodegr 81:88–104. https://doi.org/10.1016/j.ibiod.2012.08.002

    Article  CAS  Google Scholar 

  9. Rauch M, Graef HW, Rozenzhak SM et al (2006) Characterization of microbial contamination in United States Air Force aviation fuel tanks. J Ind Microbiol Biotechnol 33:29–36. https://doi.org/10.1007/s10295-005-0023-x

    Article  CAS  PubMed  Google Scholar 

  10. White J, Gilbert J, Hill G et al (2011) Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation. Appl Environ Microbiol 77:4527–4538. https://doi.org/10.1128/AEM.02317-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blakey S, Rye L, Wilson CW (2011) Aviation gas turbine alternative fuels: a review. Proc Combust Inst 33:2863–2885. https://doi.org/10.1016/j.proci.2010.09.011

    Article  CAS  Google Scholar 

  12. Holladay J, Abdullah Z, Heyne J (2020) Sustainable aviation fuel: review of technical studies. Bioenergy Techno Off:1–81. https://doi.org/10.2172/1660415

  13. Bakanaukas S (1958) Bacterial activity in JP-4 fuel. In: [S. l]: Wright Air Develop. Center, Rept 32-58. Defense Documentation Center No. AD 151034. US Air Force, Dayton, Ohio, USA

  14. Gutheil NG, (1966) Ocorrênciade Cladosporium resinae (Lindau) de Vries em querosene de aviação no Brasil. Boletim N°. 9, InstitutoTecnológicodoRS,1966.Porto Alegre

  15. Araya R, Bobadilla C, Rosalles V (2007) Biochemical analysis of the Hormoconis resinae fungal mycelium in the corrosion of aeronautical aluminium alloys. RevistadeMetalurgia 43:228–236. https://doi.org/10.3989/revmetalm.2007.v43.i3.68

    Article  CAS  Google Scholar 

  16. Araya R, Bobadilla C, Rosalles V, Rosa V (2008) Corrosion de aleaciones aeronauticas de aluminio y sus componentes relacionada a la expresion proteica del hongo hormoconis resinae. Inf Tecnol 19:59–68. https://doi.org/10.4067/S0718-076420080002

    Article  CAS  Google Scholar 

  17. Bento FM, Peralba MCR, Ferrão MF, Zimmer AR, et al. (2016) Diagnóstico, monitoramento e controle da contaminação microbiana em biodiesel e misturas durante o armazenamento. In:Pinho DMM, Suarez PAZ (Orgs) Armazenagem e uso de biodiesel: problemasassociados eformas decontrole.Brasília, p. 112-175.

  18. Buddie AG, Bridge PD, Kelley J et al (2011) Candida kerosene esp. nov., a novel contaminantof aviationkerosene. Lett Appl Microbiol 52:70–75. https://doi.org/10.1111/j.1472-765X.2010.02968.x

    Article  CAS  PubMed  Google Scholar 

  19. ChiciudeanI I, Mereuţă I, Ionescu R et al (2019) Jeta-1 bacterial contamination: a case study of cultivable bacteria diversity, alkane degradation and biofilm formation. Polish J Environ Stududies 28:4139–4146. https://doi.org/10.15244/pjoes/99108

    Article  CAS  Google Scholar 

  20. Climent E, Gotor R, Tobias C et al (2021) Dip sticks embedding molecular beacon-functionalized core-mesoporous shell particles for the rapidon-site detection of microbiological fuel contamination. Am Chem Soc 6:27–34. https://doi.org/10.1021/acssensors.0c01178

    Article  CAS  Google Scholar 

  21. Hill T (2003) Microbial growth in aviation fuel. Aircraft Eng Aerospace Technol; Bradford 75:497–502. https://doi.org/10.1108/00022660310492582

    Article  Google Scholar 

  22. Leuchtle B, Epping L, Xie W et al (2018) Defined inoculum for the investigation of microbial contaminations of liquid fuels. Int Biodeter Biodegr 132:84–93. https://doi.org/10.1016/j.ibiod.2017.05.017

    Article  CAS  Google Scholar 

  23. Passman FJ, Kelley J, Whalen P (2019) Interlaboratory study comparing two fuel microbiology standard test methods. Int Biodeter Biodegr 141:17–23. https://doi.org/10.1016/j.ibiod.2018.07.005

    Article  CAS  Google Scholar 

  24. Rafin C, Veignie E (2019) Hormoconis resinae, the kerosene fungus. In: Mcgenity TJ (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Handbook of Hydrocarbon and Lipid Microbiology, Springer, Switzerland, pp 299–318

    Chapter  Google Scholar 

  25. Robbins JA, Lewy R (2004) A review of the microbial degradation of fuel. In: Paulus W (eds) Directory of microbicides for the protection of materials: a handbook. Springer, Dordrecht, Switzerland, pp177-201.

  26. Rosales BM, Iannuzzi M (2008) Aluminium AA2024T351 aeronautical alloy. Part 1. Microbial influenced corrosion analysis. Mater Sci Eng 472:15–25. https://doi.org/10.1016/j.msea.2007.06.079

    Article  CAS  Google Scholar 

  27. Valle SM (1991) Estudo da corrosão microbiológica do alumínio e liga de alumínio 2024, porcontaminantesfúngicosdeturbocombustível. In: Tese (Doutorado em Engenharia de Minas, Metalúrgica e de Materiais). Universidade Federal do Rio Grande do Sul, Porto Aelgre

    Google Scholar 

  28. Gaylarde CC, Bento FM, Kelley J (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30:1–10. https://doi.org/10.1590/S0001-37141999000100001

    Article  CAS  Google Scholar 

  29. Shapiro T, Chekanov K, Alexandrova A et al (2021) Revealing of non-cultivable bacteria associated with the mycelium of fungi in the kerosene-degrading community isolated from the contaminated jet fuel. J Fungy 7:43. https://doi.org/10.3390/jof7010043

    Article  CAS  Google Scholar 

  30. Zhang J, Luo H, Yin X et al (2021) Surface coating on aluminum substrate with polymeric guanidine derivative to protect jet fuel tanks from microbial contamination. Surf Coat Technol 422:27521. https://doi.org/10.1016/j.surfcoat.2021.127521

    Article  CAS  Google Scholar 

  31. Hill EC, Hill GC (2008) Microbialcontamination and associated corrosion in fuels, during storage, distribution and use. Adv Mat Res 38:257–268. https://doi.org/10.4028/www.scientific.net/AMR.38.257

    Article  Google Scholar 

  32. Silva TL, Cazarolli JC, Pizzolato TM, etal (2022) Microbial sludge formation in Brazilian marine diesel oil (B0) and soybean methylic biodiesel blends (B10 and B20) during simulated storage. Fuel 308: 121905. https://doi.org/10.1016/j.fuel.2021.121905

  33. Hill GC (2012) Investigation of Susceptibility of alternative jet fuels to microbiological growth: ALFA-BIRD project. ECHA Microbiology Limited, St Mellons https://www.caafi.org/news/pdf/ECHA_Microbial_Rpt_Alpha_Bird_Jun12.pdf. Acessed 6 oct 2021

    Google Scholar 

  34. Cazarolli JC, Guzzato R, Samios D et al (2014) Susceptibility of linseed, soybean, and olive biodiesel to growth of the deteriogenic fungus Pseudallescheria boydii. Int Biodeter Biodegr 95:364–372. https://doi.org/10.1016/j.ibiod.2013.09.025

    Article  CAS  Google Scholar 

  35. Cazarolli JC, Silva TL, Ribas RKC, etal (2020) Deterioration potential of Aureobasidium pullulans on biodiesel, diesel, and B20 blend. Int Biodeter Biodegr 147:104839 https://doi.org/10.1016/j.ibiod.2019.104839

  36. Ferreira ME, Grattapaglia D (1996) Introdução ao uso de marcadores moleculares em análise genética, 3rd edn. EMBRAPA-CENARGEN, Brasília

    Google Scholar 

  37. PETROBRÁS. Querosene de Aviação: informações técnicas. Rio de Janeiro. 2021. Disponível em:https://petrobras.com.br/data/files/9A/47/97/3E/104ED7105FC7BCD7E9E99EA8/Ma nual%20de%20Querosene%20de%20Aviacao%202021.pdf. Acesso em: 3 out. 2022.

  38. National Agency of Petroleum Natural Gas and Biofuels - ANP Resolution N°. 846 of October 22, 2021 – DOU 10.25.2021. Regulates the specificationsof aviation fuels contained in ANP Technical Regulation No. 856/2021 and the obligations regarding quality control to be met by the various economic agents that market the product throughout the national territory. http://www.in.gov.br/en/web/DOU/ [access: 19 05.2023

  39. Jiménez-Días L, Caballero A, Pérez-Hernández N et al (2017) Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microb Biotechnol 10:103–124. https://doi.org/10.1111/1751-7915.12423

    Article  Google Scholar 

  40. Ryder JA: Jet fuel compositions and methods of making and using same. United States Patent 2012, US 8106247 B2

  41. Hanson KG, Desai JD, Desai AJ (1993) A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Tech 7:745–748. https://doi.org/10.1007/BF00152624

    Article  CAS  Google Scholar 

  42. Bushnell LD, Haas HFI (1941) The utilization of hydrocarbons by microorganisms. J. Bacteriol 41:653–673. https://doi.org/10.1128/jb.41.5.653-673.1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lobato MR, Aranda DAG, Antoniosi Filho NRA et al (2020) Prospecção, identificação e capacidade de crescimento de microrganismos dequerosene de aviação e bioquerosene durante estocagem simulada.In: Nobre CP, Oliveira ACS (org) Estudosambientais e agronômicos, resultados para o Brasil, 1ed. Editora Pascal, São Luís:249–270

  44. Ergin Ç, GöK Y, Bayĝu Y et al (2016) ATR-FTIR spectroscopy highlights the problem of distinguishing between Exophiala dermatitidis and E. phaeomuriformis using MALDI-TOF MS. Microb Ecol 71:339–346. https://doi.org/10.1007/s00248-015-0670-z

    Article  CAS  PubMed  Google Scholar 

  45. Prenafeta-Boldú FX, Hoog GS, Summerbell RC (2019) Fungal communities inhydrocarbon degradation. In: Mcgenity TJ (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Springer Cham, Switzerland, pp 307–342

    Google Scholar 

  46. Isola D, Selbmann L, de Hoog SG et al (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. https://doi.org/10.1007/s11046-013-9635-2

    Article  PubMed  Google Scholar 

  47. SterflingerK (2006) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Peter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 501–154

    Chapter  Google Scholar 

  48. Piontelli LE (2013) Diversidad y polimorfismo enelgénero Exophiala: manejo de las especies comunesen el laboratorio de baja complejidad. BoletínMicológico 28:2–15. https://doi.org/10.22370/bolmicol.2013.28.1.880

    Article  Google Scholar 

  49. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiology 17:97–124. https://doi.org/10.1080/01490450050023791

    Article  CAS  Google Scholar 

  50. Zalar P, Nowak M, De Hoog SG et al (2011) Dishwashers-aman-madeecological niche accommodating human opportunistic fungal pathogens. Fungal Biol 115:997–1007. https://doi.org/10.1016/j.funbio.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  51. Zupančič J, Raghupathi PK, Houf K et al (2018) Synergistic interactions in microbial biofilms facilitate the establishment of opportunistic pathogenic fungi in household dishwashers. Front Microbiol 9:113. https://doi.org/10.3389/fmicb.2018.00021

    Article  Google Scholar 

  52. Matos T, Haase G, Gerrits AHG et al (2003) Molecular diversity of oligotrophic and neurotropic members of the black yeast genus Exophiala, with accenton E. dermatitidis. Antonie van Leeuwenhoek 83:293–303. https://doi.org/10.1023/A:1023373329502

    Article  CAS  PubMed  Google Scholar 

  53. Najafzadeh MJ, Dolatabadi S, Keisari MS et al (2013) Detection and identification of opportunistic Exophiala species using the rolling circleamplification of ribosomal internal transcribed spacers. Journal of Microbiological Methods 94:338–342. https://doi.org/10.1016/j.mimet.2013.06.026

    Article  CAS  PubMed  Google Scholar 

  54. Siporin C, Cooney JJ (1976) Inhibition of glucose metabolism by n hexadecane in Cladosporium (Amorphotheca) resinae. J Bacteriol 128:235–241. https://doi.org/10.1128//jb.128.1.235-241.1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miranda RC, Souza CS, Gomes EB et al (2007) Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Portin the State of Pernambuco -Brazil. Braz Arch Biol Technol 50:147–152. https://doi.org/10.1590/S1516-89132007000100018

    Article  CAS  Google Scholar 

  56. Junior JS, Mariano AP, Angelis DDF (2009) Biodegradation of biodiesel/diesel blends by Candidavis wanathii. Afr J Biotechnol 8:2774–2778. https://doi.org/10.5897/AJB09.238

    Article  Google Scholar 

  57. de Souza LM, Mendes P, Aranda D (2018) Assessing the current scenario of the Brazilian biojet market. Renew Sustain Energy Rev 98:426–438. https://doi.org/10.1016/j.rser.2018.09.039

    Article  Google Scholar 

  58. Parbery DG (1969) The natural occurrence of Cladosporium resinae. Trans Br Mycol Soc 53:15–23. https://doi.org/10.1016/S0007-1536(69)80002-1

    Article  Google Scholar 

  59. Seifert KA, Hughes SJ, Boulay H et al (2007) Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybere sinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae. Stud Mycol 58:235–245. https://doi.org/10.3114/sim.2007.58.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Edmonds P, Cooney JJ (1967) Identification of microorganisms isolated from jet fuelsystems. Appl Microbiol 15:411–416. https://doi.org/10.1128/am.15.2.411-416.1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guiamet PS, Saravia SGG (2017) Biofilms formation and microbiologically influenced corrosion (MIC) in different materials. Innov Corros Mater Sci 7:2

    Google Scholar 

  62. Martin-sanchez PM, Becker R, Gordushina AA et al (2018) Improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms. Int Biodeter Biodegr 129:89–94. https://doi.org/10.1016/j.ibiod.2018.01.009

    Article  CAS  Google Scholar 

  63. Raikos V, Vamvakas SS, Kapolos J et al (2011) (2011) Identification and characterization of microbial contaminants isolated from stored aviation fuels by DNA sequencing and restriction fragment length analysis of a PCR-amplifiedregion of the 16SrRNA gene. Fuel 90:695–700. https://doi.org/10.1016/j.fuel.2010.09.030

    Article  CAS  Google Scholar 

  64. Vidella HA, Guiamet PS, Valle S (1993) Effects of fungal and bacterial contaminants of kerosene fuels on the corrosion of storage and distribution systems. In: Kobrin G (Eds) A pratical manual on microbiologically influenced corrosion. NACE International, Houston, ppb125-139. https://doi.org/10.2174/2352094907666170420122727

  65. Lindley ND, Heydeman MT (1985) Alkane utilisation by Cladosporium resinae: the importance of extended lag phases when assessing substrate optima. FEMS Microbiol Lett 31:307–310. https://doi.org/10.1111/j.1574-6968.1985.tb01164.x

    Article  CAS  Google Scholar 

  66. Azambuja AO, Bücker F, Quadros PD et al (2017) Microbial community composition in Brazilian stored diesel fuel of varying sulfur content, using high-throughput sequencing. Fuel 189:340–349. https://doi.org/10.1016/j.fuel.2016.10.108

    Article  CAS  Google Scholar 

  67. Beker SA (2014) Avaliação do potencial antimicrobiano de TBHQ (Terc-Butil-Hidroquinona) e de Bio-Óleo para uso em Biodiesel de soja (B100) e óleo diesel b (B10). Universidade Federal do Rio Grande do Sul, Dissertação http://hdl.handle.net/10183/126976

    Google Scholar 

  68. Beker AS, Silva YP, Bücker F et al (2016) Effect of different concentrations of tert-butylhydroquinone (TBHQ) on microbial growth and chemical stability of soybean biodiesel during simulated storage. Fuel 84:701–707

    Article  Google Scholar 

  69. Bento FM, Gaylarde CC (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeter Biodegr 47:107–112. https://doi.org/10.1016/S0964-8305(00)00112-8

    Article  CAS  Google Scholar 

  70. Bento FM, Camargo FAO, Okeke BC et al (2003) Bioremediation of soil contaminated by diesel oil. Braz J Microbiol 34:65–68. https://doi.org/10.1590/S1517-8382200300050022

    Article  Google Scholar 

  71. Bento FM, Camargo FAO, Okeke BC et al (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255. https://doi.org/10.1016/j.micres.2004.08.005

    Article  CAS  Google Scholar 

  72. Bücker F, Santestevan NS, Roesch LF et al (2011) Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. Int Biodeter Biodegr 65:172–178. https://doi.org/10.1016/j.ibiod.2010.09.008

    Article  CAS  Google Scholar 

  73. Bücker F, Barbosa CS, PD Q et al (2014) Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide. Int Biodeter Biodegr 95:346–355. https://doi.org/10.1016/j.ibiod.2014.05.030

    Article  CAS  Google Scholar 

  74. CazarolliJC BF, Manique MC et al (2012) Suscetibilidade do biodiesel de sebo bovino à biodegradação por Pseudallescheria boydii. Revista Brasileira de Biociências 10:251–257 http://hdl.handle.net/10183/106928

    Google Scholar 

  75. Cazarolli JC, Quadros PD, Bücker F, etal (2016) Microbial growth in Acrocomia aculeata pulp oil, Jatropha curcas oil, and the irrespective biodiesels undersimulated storage conditions. Biofuel Res J 3: 514–520. https://doi.org/10.18331/BRJ2016.3.4.5

  76. Cazarolli JC, Silva TL, Lobato MR et al (2021) Impact of water content on microbial growth in Brazilian biodiesel during simulated storage. Fuel 297:120761. https://doi.org/10.1016/j.fuel.2021.120761

    Article  CAS  Google Scholar 

  77. Cofone L, Walker JD, Cooney JJ (1973) Utilization of hydrocarbonsby Cladosporium resinae. J Gen Microbiol 76:243–246. https://doi.org/10.1099/00221287-76-1-243

    Article  CAS  PubMed  Google Scholar 

  78. Cooney JJ, Proby CM (1971) Fatty acid composition of Cladosporium resinae grown on glucose and on hydrocarbons. J Bacteriol 108:777–718. https://doi.org/10.1128/jb.108.2.777-781.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Teh JS, Lee KH (1973) Utilization of n-alkanes by Cladosporium resinae. Appl Microbiol 25(3):454–457. https://doi.org/10.1128/aem.25.3.454-457.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lindley ND, Heydeman MT (1986) Mechanism of dodecane uptake by whole cells of Cladosporium resinae. J Gen Microbiol 132:751–756. https://doi.org/10.1016/03-1097(85)90054-0

    Article  CAS  Google Scholar 

  81. Boelter G, Cazarolli JC, Beker SA et al (2018) Pseudallescheria boydii and Meyerozyma guilliermondii: behavior of deteriogenic fungiduring simulated storage of diesel, biodiesel, and B10 blend in Brazil. Environ Sci Pollut Res 25:30410–30424. https://doi.org/10.1007/s11356-018-3015-x

    Article  CAS  Google Scholar 

  82. Bento FM, Gaylarde CC, Camargo FAO (2008) Biossurfactantes. In: Azevedo, JL, Melo, IS (Org) Microbiologia Ambiental, 2nd edn. Embrapa, Rio de Janeiro, pp 151–184

    Google Scholar 

  83. Kaczorek E, Jesionowski T, Giec A et al (2012) Cell surface properties of Pseudomonas stutzeri in the process of diesel oil biodegradation. Biotechnol Lett 34:857–862. https://doi.org/10.1007/s10529-011-0835-x

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamno lipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282. https://doi.org/10.1128/aem.58.10.3576-3282.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Muriel JM, Bruque JM, Olías JM et al (1996) Production of biosurfactants by Cladosporium resinae. Microbiol Lett 18:235–240 101007/BF00142937

    CAS  Google Scholar 

  86. Floyd JG, Stamps BW, Bojanows CL et al (2022) The composition of diesel fuel influences the structure of microbiological assemblages in contaminated storage tanks. BioRxiv:1–41. https://doi.org/10.1101/2022.02.09.479836

  87. Ruiz OM, Brown LM, Radwan O et al (2021) Metagenomic characterization reveals complex association of soil hydrocarbon-degrading bacteria. Int Biodeter Biodegr 157:105161. https://doi.org/10.1016/j.ibiod.2020.105161

    Article  CAS  Google Scholar 

  88. Smart C, Foley W, Ruiz OM et al (2012) Final report for the defense logistics agency (DLA) study of the effect of hydrocarbon type biodegradation on fuel specification properties, Dayton, OH 45469 N/A STU

  89. Stamper DM, Morris RE, Montgomery MT (2012) Depletion of lubricity improvers from hydrotreated renewable and ultra low-sulfur petroleum diesels by marine microbiota. Energy Fuels 26:6854–6862. https://doi.org/10.1021/ef301158n

    Article  CAS  Google Scholar 

  90. Sutton PA, Lewis CA, Rowland SJ (2005) Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography. Org Geochem 36:963–970. https://doi.org/10.1016/j.orggeonchem.2004.11.007

    Article  CAS  Google Scholar 

  91. Oh K-Bong, Woogchon M, Il-Moo C, (2001) Biodegradation of hidrocarbons by an organic solvent-tolerant fungus, Cladosporium resinae NK1. J Microbiol Biotechnol 11: 50-60. https://1017-7825(pISSN)/1738-8872

  92. Maciel CCS, Souza CS, Silva PA et al (2013) Cinética de degradação de querosene de aviação por Penicillium sp. através da bioestimulação. Revista Brasileira de Biociências 11:39–42 https://seer.ufrgs.br/index.php/rbrasbioci/article/view/115541

    Google Scholar 

  93. Khan SR, Nirmal JIK, Kumar RN et al (2015) Biodegradation of kerosene: study of growth optimization and metabolic fate of P. janthinellum SDX7. Braz J Microbiol 46:397–406. https://doi.org/10.1590/S1517-838246220140112

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lindley ND (1995) Bioconversion and biodegradation of aliphatic hydrocarbons. Can J Bot 73:1034–1042. https://doi.org/10.1139/b95-354

    Article  Google Scholar 

  95. Walker JD, Cooney JJ (1973) Pathway of n-alkane oxidation in Cladosporium resinae. J Bacteriol 115:635–639. https://doi.org/10.1128/jb.115.2.635-639.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goswami P, Cooney JJ (1999) Subcellular location of enzymes involved in oxidation of n-alkane by Cladosporium resinae. Appl Environ Microbiol 51:860–864. https://doi.org/10.1007/s002530051474

    Article  CAS  Google Scholar 

  97. Hashen M, Alamri SA, Sharefah SAA et al (2018) Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains. Ecotoxicol Environ Saf 151:28–34. https://doi.org/10.1016/j.ecoenv.2017.12.064

    Article  CAS  Google Scholar 

  98. MaierRMM (2009) Microorganisms and organic pollutants. In: Pepper IL, Gerba CP (eds) Environmental microbiology, 2nd edn. Academic Press, San Diego, pp 387–420

    Google Scholar 

  99. Striebich RC, Smart C, Gunasekera TS et al (2014) Characterization of the F-76 diesel and Jet-A aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and Marinobacter hydrocarbonoclasticus. Int Biodeter Biodegr 93:33–43. https://doi.org/10.1016/j.ibiod.2014.04.024

    Article  CAS  Google Scholar 

  100. Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem. Biol 17:480–488. https://doi.org/10.1016/j.cbpa.2013.03.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was performed with the resources from LAB-BIO (Laboratory of Biodeterioration of Fuels and Biofuels) and the Post-Graduation Program in Agricultural and Environmental Microbiology of the Federal University of Rio Grande of Sul, Brazil. Mariane Lobato thanks the CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate Education) for the Doctoral fellowship. We also thank Instituto Nacional de Tecnologia (INT), RBQAV (Rede Brasileira de Bioquerosene e Hidrocarbonetos Renováveis para aviação), Ubrabio (União Brasileira de Biodiesel e Bioquerosene), and a special reference to Pedro Rafael Scorza (in memorian) for his support and encouragement and for providing the farnesane sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Menezes Bento.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Gisele Monteiro

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to the memory of Commander Pedro Rodrigo Scorza, who passed away.

Supplementary information

ESM 1

(JPG 95.4 kb)

ESM 2

(JPG 75.6 kb)

ESM 3

(JPG 92.9 kb)

ESM 4

(JPG 49.3 kb)

ESM 5

(JPG 37.8 kb)

ESM 6

(JPG 47.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobato, M.R., Cazarolli, J.C., Rios, R.D.F. et al. Behavior of deteriogenic fungi in aviation fuels (fossil and biofuel) during simulated storage. Braz J Microbiol 54, 1603–1621 (2023). https://doi.org/10.1007/s42770-023-01055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01055-6

Keywords

Navigation