Skip to main content
Log in

Occurrence of antimicrobial-resistant Staphylococcus aureus in a Brazilian veterinary hospital environment

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is a threat to public health. The emergence of antibiotic-resistant Staphylococcus aureus represents a priority for the implementation of preventive measures. The objective was to isolate S. aureus in humans, animals, and animal health care environment, and to characterize the genotypic and phenotypic profile of antimicrobial resistance in these isolates. We isolated S. aureus from staff, animals, and environment of a veterinary hospital, and identified their antimicrobial resistance profiles. Samples were collected from 20 humans, 13 animals, 14 surfaces, 8 mobile phones, and 7 veterinarians’ stethoscopes by using sterile swabs. S. aureus was isolated by culturing on mannitol salt agar and preliminary identification was done by Gram staining and catalase test. Subsequently, a polymerase chain reaction was performed for species confirmation and investigating their antimicrobial-resistant genotypic profiles. Phenotypic profiles of resistant isolates were determined using the disk-diffusion technique. Ten S. aureus isolates were recovered from 5/20 humans (25%), it was also recovered from 2/13 animals (15.38%), including 1 dog and 1 cat, and from 1/14 of surfaces (7.14%). The oxacillin-susceptible mecA-positive Staphylococcus aureus phenotype was identified in a feline. Most of the isolates carried at least two resistance genes of different antimicrobial classes, with 90% (9/10) presenting the gene blaZ, with 10% (1/10) presenting the gene mecA, 20% (2/10) presenting tet38, 10% (1/10) presenting tetM, 90% (9/10) presenting norA, 50% (5/10) presenting norC, 10% (1/10) presenting ermA, and 60% (6/10) presenting ermB. In antibiograms, resistance to penicillin was identified in all the isolates, resistance to erythromycin was identified in 80% (8/10), and all the isolate’s resistance to erythromycin presented erythromycin-induced resistance to clindamycin. Antimicrobial resistance in the veterinary hospital requires attention due to the risk of interspecies transmission, gene transfer between bacteria that colonize companion animals and humans and, can make antimicrobial therapy difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization (2020) Antibacterial agents in clinical and preclinical development: an overview and analysis. https://apps.who.int/iris/handle/10665/340694. Accessed 10 May 2022

  2. Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Ver. https://doi.org/10.1128/CMR.00020-18

    Article  Google Scholar 

  3. da Silva Jr. JB, Espinal M, Ramón-Pardo P (2020) Antimicrobial resistance: time for action. Rev Panam Salud Pública. https://doi.org/10.26633/RPSP.2020.131

  4. Bierowiec K, Płoneczka-Janeczko K, Rypuła K (2016) Prevalence and risk factors of colonization with Staphylococcus aureus in healthy pet cats kept in the city households. Biomed Res Int. https://doi.org/10.1155/2016/3070524

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kaspar U, von Lützau A, Schlattmann A, Roesler U, Köck R, Becker K (2018) Zoonotic multidrug-resistant microorganisms among small companion animals in Germany. PLoS One. https://doi.org/10.1371/journal.pone.0208364

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kohler V, Vaishampayan A, Grohmann E (2018) Broad-host-range Inc18 plasmids: occurrence, spread and transfer mechanisms. Plasmid. https://doi.org/10.1016/j.plasmid.2018.06.001

    Article  PubMed  Google Scholar 

  7. Leroy S, Christieans S, Talon R (2019) Tetracycline gene transfer in Staphylococcus xylosus in situ during sausage fermentation. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00392

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rossi CC, Pereira MF, Giambiagi-deMarval M (2020) Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol. https://doi.org/10.1590/1678-4685-GMB-2019-0065

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fabri FV, Pinto NB et al (2021) First report of oxacillin-susceptible mecA-positive Staphylococcus aureus in healthy dogs and their owners in southern Brazil. Prev Vet Med. https://doi.org/10.1016/j.prevetmed.2021.105286

  10. Penna B, Silva MB, Soares AER et al (2021) Comparative genomics of MRSA strains from human and canine origins reveals similar virulence gene repertoire. Sci Rep. https://doi.org/10.1038/s41598-021-83993-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carter GR (1989) Fundamentos de bacteriología y micología veterinária. Editorial Acribia, S.A. Zaragoza. (No. Sirsi) i9788420006383)

  12. Fan HH, Kleven SH, Jackwood MW (1995) Application of polymerase chain reaction with arbitrary primers to strain identification of Mycoplasma gallisepticum. Avian Dis 39(4):729–735

    Article  CAS  PubMed  Google Scholar 

  13. Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30(7):1654–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kateete DP, Kimani CN, Katabazi FA et al (2010) Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Ann Clin Microbiol Antimicrob. https://doi.org/10.1186/1476-0711-9-23

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sawant A, Gillespie B, Oliver S (2009) Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet Microbiol. https://doi.org/10.1016/j.vetmic.2008.09.006

    Article  PubMed  Google Scholar 

  16. Nakagawa S, Taneike I, Mimura D et al (2005) Gene sequences and specific detection for Panton-Valentine leukocidin. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2005.01.054

    Article  PubMed  Google Scholar 

  17. Paterson GK, Larsen AR, Robb A et al (2012) The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. J Antimicrob Chemother. https://doi.org/10.1093/jac/dks329

    Article  PubMed  PubMed Central  Google Scholar 

  18. Warsa UC, Nonoyama M, Ida T et al (1996) Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. J Antibiot. https://doi.org/10.7164/antibiotics.49.1127

    Article  Google Scholar 

  19. Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes. https://doi.org/10.1006/mcpr.2001.0363

    Article  PubMed  Google Scholar 

  20. McMurry LM, Park BH, Burdett V, Levy SB (1987) Energy-dependent efflux mediated by class L (tetL) tetracycline resistance determinant from streptococci. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.31.10.1648

    Article  PubMed  PubMed Central  Google Scholar 

  21. Truong-Bolduc QC, Zhang X, Hooper DC (2003) Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J Bacteriol. https://doi.org/10.1128/JB.185.10.3127-3138.2003

    Article  PubMed  PubMed Central  Google Scholar 

  22. Truong-Bolduc QC, Strahilevitz J, Hooper DC (2006) NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.50.3.1104-1107.2006

    Article  PubMed  PubMed Central  Google Scholar 

  23. Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC (2005) MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol. https://doi.org/10.1128/JB.187.7.2395-2405.2005

    Article  PubMed  PubMed Central  Google Scholar 

  24. Werckenthin C, Schwarz S (2000) Molecular analysis of the translational attenuator of a constitutively expressed erm(A) gene from Staphylococcus intermedius. J Antimicrob Chemother. https://doi.org/10.1093/jac/46.5.785

    Article  PubMed  Google Scholar 

  25. Jensen LB, Frimodt-Møller N, Aarestrup FM (1999) Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett. https://doi.org/10.1111/j.1574-6968.1999.tb13368.x

  26. CLSI (2019) Performance standards for antimicrobial susceptibility testing (29th ed.). CLSI supplement M100. Clinical and Laboratory Standards Institute. https://clsi.org/media/3486/clsi_astnewsupdate_january2020.pdf. Accessed 10 May 2022

  27. Iverson SA, Brazil AM, Ferguson JM et al (2015) Anatomical patterns of colonization of pets with staphylococcal species in homes of people with methicillin-resistant Staphylococcus aureus (MRSA) skin or soft tissue infection (SSTI). Vet Microbiol. https://doi.org/10.1016/j.vetmic.2015.01.003

    Article  PubMed  Google Scholar 

  28. Bean D, Wigmore S (2016) Carriage rate and antibiotic susceptibility of coagulase-positive staphylococci isolated from healthy dogs in Victoria, Australia. Aust Vet J. https://doi.org/10.1111/avj.12528

  29. Elnageh HR, Hiblu MA, Abbassi MS, Abouzeed YM, Ahmed MO (2021) Prevalence and antimicrobial resistance of Staphylococcus species isolated from cats and dogs. Open Vet J. https://doi.org/10.4314/ovj.v10i4.13

    Article  PubMed  Google Scholar 

  30. Ruzauskas M, Couto N, Kerziene S et al (2015) Prevalence, species distribution and antimicrobial resistance patterns of methicillin-resistant staphylococci in Lithuanian pet animals. Acta Vet Scand. https://doi.org/10.1186/s13028-015-0117-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bierowiec K, Płoneczka-Janeczko K, Rypuła K (2016) Is the colonisation of Staphylococcus aureus in pets associated with their close contact with owners? PLoS One. https://doi.org/10.1371/journal.pone.0156052

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gandolfi-Decristophoris P, Regula G, Petrini O, Zinsstag J, Schelling E (2013) Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs. J Vet Sci. https://doi.org/10.4142/jvs.2013.14.4.449

    Article  PubMed  PubMed Central  Google Scholar 

  33. Elmoslemany A, Elsohaby I, Alorabi M et al (2021) Diversity and risk factors associated with multidrug and methicillin-resistant staphylococci isolated from cats admitted to a veterinary clinic in Eastern Province, Saudi Arabia. Antibiotics. https://doi.org/10.3390/antibiotics10040367

  34. Bierowiec K, Korzeniowska-Kowal A, Wzorek A, Rypuła K, Gamian A (2019) Prevalence of Staphylococcus species colonization in healthy and sick cats. Biomed Res Int. https://doi.org/10.1155/2019/4360525

    Article  PubMed  PubMed Central  Google Scholar 

  35. Morris DO, Lautenbach E, Zaoutis T, Leckerman K, Edelstein PH, Rankin SC (2012) Potential for pet animals to harbour methicillin-resistant Staphylococcus aureus when residing with human MRSA patients: role of pets as reservoirs for MRSA. Zoonoses Public Health. https://doi.org/10.1111/j.1863-2378.2011.01448.x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quitoco IMZ, Ramundo MS, Silva-Carvalho MC et al (2013) First report in South America of companion animal colonization by the USA1100 clone of community-acquired meticillin-resistant Staphylococcus aureus (ST30) and by the European clone of methicillin-resistant Staphylococcus pseudintermedius (ST71). BMC Res Notes. https://doi.org/10.1186/1756-0500-6-336

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Menezes MP, Facin AC, Cardozo MV, Costa MT, Moraes PC (2021) Evaluation of the resistance profile of bacteria obtained from infected sites of dogs in a veterinary teaching hospital in Brazil: a retrospective study. Top Companion Anim Med. https://doi.org/10.1016/j.tcam.2020.100489

    Article  PubMed  Google Scholar 

  38. Penna B, Mendes W, Rabello R, Lilenbaum W (2013) Carriage of methicillin susceptible and resistant Staphylococcus schleiferi among dog with or without topic infections. Vet Microbiol. https://doi.org/10.1016/j.vetmic.2012.08.022

    Article  PubMed  Google Scholar 

  39. Muniz IM, Penna B, Lilenbaum W (2013) Treating animal bites: susceptibility of staphylococci from oral mucosa of cats: treating animal bites. Zoonoses Public Health. https://doi.org/10.1111/zph.12027

    Article  PubMed  Google Scholar 

  40. González-Domínguez MS, Carvajal HD, Calle-Echeverri DA, Chinchilla-Cárdenas D (2020) Molecular detection and characterization of the mecA and nuc genes from Staphylococcus species (S. aureus, S. pseudintermedius, and S. schleiferi) isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles. Front Vet Sci. https://doi.org/10.3389/fvets.2020.00376

  41. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00134-14

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abdullahi IN, Lozano C, Ruiz-Ripa L, Fernández-Fernández R, Zarazaga M, Torres C (2021) Ecology and genetic lineages of nasal Staphylococcus aureus and MRSA carriage in healthy persons with or without animal-related occupational risks of colonization: a review of global reports. Pathogens. https://doi.org/10.3390/pathogens10081000

    Article  PubMed  PubMed Central  Google Scholar 

  43. Crespo-Piazuelo D, Lawlor PG (2021) Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Ir Vet J. https://doi.org/10.1186/s13620-021-00200-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Verkade E, van Benthem B, den Bergh MK van et al (2013) Dynamics and determinants of Staphylococcus aureus carriage in livestock veterinarians: a prospective cohort study. Clin Infect Dis. https://doi.org/10.1093/cid/cit228

  45. Sun J, Yang M, Sreevatsan S et al (2017) Longitudinal study of Staphylococcus aureus colonization and infection in a cohort of swine veterinarians in the United States. BMC Infect Dis. https://doi.org/10.1186/s12879-017-2802-1

    Article  PubMed  PubMed Central  Google Scholar 

  46. Paul NC, Moodley A, Ghibaudo G, Guardabassi L (2011) Carriage of methicillin-resistant Staphylococcus pseudintermedius in small animal veterinarians: indirect evidence of zoonotic transmission: methicilln-resistant Staphylococcus pseudintermedius in veterinarians. Zoonoses Public Health. https://doi.org/10.1111/j.1863-2378.2011.01398.x

    Article  PubMed  Google Scholar 

  47. Worthing KA, Brown J, Gerber L, Trott DJ, Abraham S, Norris JM (2018) Methicillin-resistant staphylococci amongst veterinary personnel, personnel-owned pets, patients and the hospital environment of two small animal veterinary hospitals. Vet Microbiol. https://doi.org/10.1016/j.vetmic.2018.07.021

    Article  PubMed  Google Scholar 

  48. Silva ATF, da Silva JG, Aragão BB et al (2021) Genetic traceability of Staphylococcus aureus strains isolated from primiparous dairy cows mastitis, humans and environment in the Northeast region of Brazil. Cienc Rural. https://doi.org/10.1590/0103-8478cr20200679

    Article  Google Scholar 

  49. Silva JG da, Camargo AC, Melo RPB de et al (2021) Staphylococcus spp. mecA positivo em mastite bovina, ordenhadores, ambiente de ordenha e circulação de diferentes clones de MRSA em fazendas de vacas leiteiras na região Nordeste do Brasil. Cienc Rural. https://doi.org/10.1590/0103-8478cr20210008

  50. Sollid JUE, Furberg AS, Hanssen AM, Johannessen M (2014) Staphylococcus aureus: determinants of human carriage. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2013.03.020

    Article  PubMed  Google Scholar 

  51. WHO (2009) WHO guidelines on hand hygiene in health care. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/44102/9789241597906_eng.pdf?sequence=1&isAllowed=y. Accessed 10 May 2022

  52. Australian Veterinary Association (2008) Canadian committee on antibiotic resistance infection. Prevention and control: best practices. Hand hygiene Australia. Clinical practice: special issue ‘infectious diseases, part 3’ (2015), volume 17, number 7, Journal of feline medicine and surgery. file:///C:/Users/DELL/OneDrive/%C3%81rea%20de%20Trabalho/UFRPE/aidap-infection-control-guidelines.pdf. Accessed 10 May 2022

  53. Anderson ME, Sargeant JM, Weese J (2014) Video observation of hand hygiene practices during routine companion animal appointments and the effect of a poster intervention on hand hygiene compliance. BMC Vet Res. https://doi.org/10.1186/1746-6148-10-106

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dwipayanti NMU, Lubis DS, Harjana NPA (2019) Public perception and hand hygiene behavior during COVID-19 pandemic in Indonesia. Front Public Health. https://doi.org/10.3389/fpubh.2021.621800

    Article  Google Scholar 

  55. Suleyman G, Alangaden G, Bardossy AC (2018) The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Curr Infect Dis Rep. https://doi.org/10.1007/s11908-018-0620-2

    Article  PubMed  Google Scholar 

  56. Rojas I, Barquero-Calvo E, van Balen JC, Rojas N, Muñoz-Vargas L, Hoet AE (2017) High prevalence of multidrug-resistant community-acquired methicillin-resistant Staphylococcus aureus at the largest veterinary teaching hospital in Costa Rica. Vector Borne Zoonotic Dis. https://doi.org/10.1089/vbz.2017.2145

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nivedhitha E, Duraivel M, Kayalvili KK, Selvan SA (2021) Study to assess the risk of transmission of microbial organisms and their resistance pattern on dresses and stethoscopes of health care workers. J Pure Appl Microbiol. https://doi.org/10.22207/JPAM.15.3.04

  58. Al-Beeshi NZ, Alohali RM, Torchyan AA, Somily AM (2021) The bacterial colonization of healthcare workers’ mobile phones in a large tertiary care teaching hospital in Saudi Arabia. J Infect Dev Ctries. https://doi.org/10.3855/jidc.13201

    Article  PubMed  Google Scholar 

  59. Domon H, Uehara Y, Oda M, Seo H, Kubota N, Terao Y (2016) Poor survival of methicillin-resistant Staphylococcus aureus on inanimate objects in the public spaces. MicrobiologyOpen. https://doi.org/10.1002/mbo3.308

    Article  PubMed  Google Scholar 

  60. Davis JA, Jackson CR, Fedorka-Cray PJ et al (2014) Carriage of methicillin-resistant staphylococci by healthy companion animals in the US. Lett Appl Microbiol. https://doi.org/10.1111/lam.12254

    Article  PubMed  Google Scholar 

  61. McEwen SA, Collignon PJ (2018) Antimicrobial resistance: a one health perspective. Aarestrup FM, Schwarz S, Shen J, Cavaco L, eds. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.ARBA-0009-2017

  62. Conceição T, Coelho C, de Lencastre H, Aires-de-Sousa M (2015) Frequent occurrence of oxacillin-susceptible mecA -positive Staphylococcus aureus (OS-MRSA) strains in two African countries: Table 1. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkv261

    Article  PubMed  Google Scholar 

  63. Song Y, Cui L, Lv Y, Li Y, Xue F (2017) Characterisation of clinical isolates of oxacillin-susceptible mecA -positive Staphylococcus aureus in China from 2009 to 2014. J Glob Antimicrob Resist. https://doi.org/10.1016/j.jgar.2017.05.009

    Article  PubMed  Google Scholar 

  64. Duarte FC, Danelli T, Tavares ER et al (2019) Fatal sepsis caused by mecA-positive oxacillin-susceptible Staphylococcus aureus: first report in a tertiary hospital of southern Brazil. J Infect Chemother. https://doi.org/10.1016/j.jiac.2018.09.010

    Article  PubMed  Google Scholar 

  65. Ma M, Chu M, Tao L et al (2021) First report of oxacillin susceptible mecA-positive Staphylococcus aureus in a children’s hospital in Kunming, China. IDR. https://doi.org/10.2147/IDR.S317670

  66. Liang B, Liang X, Gao F et al (2021) Active surveillance, drug resistance, and genotypic profiling of Staphylococcus aureus among school-age children in China. Front Med. https://doi.org/10.3389/fmed.2021.701494

    Article  PubMed  PubMed Central  Google Scholar 

  67. Andrade-Figueiredo M, Leal-Balbino TC (2016) Clonal diversity and epidemiological characteristics of Staphylococcus aureus: high prevalence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with clinical isolates in Brazil. BMC Microbiol. https://doi.org/10.1186/s12866-016-0733-4

    Article  PubMed  PubMed Central  Google Scholar 

  68. Price MN, Deutschbauer AM, Skerker JM et al (2013) Indirect and suboptimal control of gene expression is widespread in bacteria. Mol Syst Biol. https://doi.org/10.1038/msb.2013.16

    Article  PubMed  PubMed Central  Google Scholar 

  69. Palmer AC, Chait R, Kishony R (2018) Nonoptimal gene expression creates latent potential for antibiotic resistance. Csaba P, ed. Mol Biol Evol. https://doi.org/10.1093/molbev/msy163

  70. Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P (2007) Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00015-06

    Article  PubMed  PubMed Central  Google Scholar 

  71. Costa SS, Sobkowiak B, Parreira R et al (2019) Genetic diversity of norA, coding for a main efflux pump of Staphylococcus aureus. Front Genet. https://doi.org/10.3389/fgene.2018.00710

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hadadi M, Heideri H, Sedigh Ebrahim-Saraie H, Motamedifar M (2018) Molecular characterization of vancomycin, mupirocin and antiseptic resistant Staphylococcus aureus strains. Mediterr J Hematol Infect Dis. https://doi.org/10.4084/mjhid.2018.053

    Article  PubMed  PubMed Central  Google Scholar 

  73. van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol. https://doi.org/10.3389/fmicb.2011.00203

    Article  PubMed  PubMed Central  Google Scholar 

  74. Costa SS, Viveiros M, Rosato AE, Melo-Cristino J, Couto I (2015) Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus. BMC Microbiol. https://doi.org/10.1186/s12866-015-0572-8

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kime L, Randall CP, Banda FI et al (2019) Transient silencing of antibiotic resistance by mutation represents a significant potential source of unanticipated therapeutic failure. Wright GD, ed. mBio 10(5):e01755–19. https://doi.org/10.1128/mBio.01755-19

  76. Ding Y, Onodera Y, Lee JC, Hooper DC (2008) NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol. https://doi.org/10.1128/JB.00655-08

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hanses F, Roux C, Dunman PM, Salzberger B, Lee JC (2014) Staphylococcus aureusgene expression in a rat model of infective endocarditis. Genome Med. https://doi.org/10.1186/s13073-014-0093-3

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen C, Hooper DC (2018) Effect of Staphylococcus aureus Tet38 native efflux pump on in vivo response to tetracycline in a murine subcutaneous abscess model. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkx432

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weisblum B (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.39.3.577

  80. Duran N, Ozer B, Duran GG et al (2012) Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J Med Res 135(3):389–396

  81. Lim JA, Kwon AR, Kim SK, Chong Y, Lee K, Choi EC (2002) Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J Antimicrob Chemother. https://doi.org/10.1093/jac/49.3.489

    Article  PubMed  Google Scholar 

  82. Martineau F, Picard FJ, Lansac N et al (2000) Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.44.2.231-238.2000

    Article  PubMed  PubMed Central  Google Scholar 

  83. Frosini SM, Bond R, McCarthy AJ et al (2020) Genes on the move: in vitro transduction of antimicrobial resistance genes between human and canine staphylococcal pathogens. Microorganisms. https://doi.org/10.3390/microorganisms8122031

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the contribution of the members of the Veterinary Hospital of the Department of Veterinary Medicine of the Federal Rural University of Pernambuco – HOVET/DMV/UFRPE. We thank the veterinarians and tutors. The authors are grateful to UFRPE, the Postgraduate Program in Animal Bioscience (PPGBA). The authors are grateful to the National Council for Scientific and Technological Development (CNPq) (financial code: 400921/2019-7) and the Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES), for the fellowship and financial support that made this research possible.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rinaldo Aparecido Mota or Tatiana Souza Porto.

Ethics declarations

Ethics approval

All experimental procedures were in accordance with the ethics principles accepted by the Ethics Committee for the Use of Animals of the Federal Rural University of Pernambuco (UFRPE), license number 1466270721, as well as by the Plataforma Brazil, license number 46827221.7.0000.9547.

Consent for publication

All authors approved the version to be published.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Mariana X Byndloss

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, D.P., Barbosa, I.C., da Silva, R.A. et al. Occurrence of antimicrobial-resistant Staphylococcus aureus in a Brazilian veterinary hospital environment. Braz J Microbiol 54, 2393–2401 (2023). https://doi.org/10.1007/s42770-023-01035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01035-w

Keywords

Navigation