Skip to main content
Log in

Escherichia coli O157:H7 strains in bovine carcasses and the impact on the animal production chain

  • Food Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Foodborne diseases are characterized by conditions that can induce symptomatic illnesses in their carriers, and therefore represent a serious problem. They are important conditions from a clinical and epidemiological point of view, and are associated with the occurrence of serious public health problems, with a strong impact on morbidity and mortality. The Escherichia coli (E. coli) is an enterobacterium associated with enteric conditions of variable intensity and which are accompanied by blood. The transmission routes are mainly based on the consumption of contaminated food and water sources. Shiga toxin-producing E. coli (STEC) are considered a serogroup of E. coli, are capable of producing Shiga-type toxins (Stx 1 and Stx 2) and the O157:H7 strain is one of the best-known serotypes. The early detection of this pathogen is very important, especially due to the capacity of contamination of carcasses destined for food consumption and supply of productive markets. Sanitary protocols must be developed and constantly reviewed in order to prevent/control the presence of the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data used for the present review are present throughout the manuscript.

References

  1. USDA - United States Department of Agriculture (2022) Livestock and poultry: world markets and trade. https://www.nal.usda.gov/. Accessed 21 Jan 2022

  2. WHO - World Health Organization (2015) WHO estimates of the global burden of foodborne diseases. https://www.paho.org/hq/dmdocuments/2015/2015-cha-estimates-global-burden-foodborne-summary.pdf. Accessed 26 Jun 2022

  3. Castro VS, Carvalho RCT, Conte-Junior CA et al (2017) Shiga-toxin producing Escherichia coli: pathogenicity, supershedding, diagnostic methods, occurrence, and foodborne outbreaks. Compr Rev Food Sci Food Saf 16:1269–1280. https://doi.org/10.1111/1541-4337.12302

    Article  CAS  PubMed  Google Scholar 

  4. Castro VS, Figueiredo EES, Stanford K et al (2019) Shiga-toxin producing Escherichia coli in Brazil: a systematic review. Microorganisms 7:1–16. https://doi.org/10.3390/microorganisms7050137

    Article  CAS  Google Scholar 

  5. Santos ECC, Neto AC, Castro VS, Carvalho RCT, Figueiredo EES (2017) Evaluation of the sanitary conditions of head meat, esophagus, diaphragm meat, and boning scrap processing. J Food Qual 2017:e3230596. https://doi.org/10.1155/2017/3230596

    Article  CAS  Google Scholar 

  6. Zaheer R, Dugat-Bony E, Holman D et al (2017) Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine. PLoS ONE 12:1–15. https://doi.org/10.1371/journal.pone.0170050

    Article  CAS  Google Scholar 

  7. Galié S, García-Gutiérrez C, Miguélez EM et al (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 9:1–18. https://doi.org/10.3389/fmicb.2018.00898

    Article  Google Scholar 

  8. Brasil - Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância Epidemiológica (2010) Manual Integrado de Vigilância, Prevenção e Controle de doenças transmitidas por alimentos. Editora do Ministério da Saúde, Brasília.

  9. Croxen MA, Law RJ, Scholz R et al (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin MicrobioL Rev 26:822–880. https://doi.org/10.1128/cmr.00022-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Obaidat MM (2020) Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comp Immunol Microbiol Infect Dis 70:101447. https://doi.org/10.1016/j.cimid.2020.101447

    Article  PubMed  Google Scholar 

  12. Gomes TAT, Elias WP, Scaletsky ICA et al (2016) Diarrheagenic Escherichia coli. Braz. J Microbiol 47:3–30. https://doi.org/10.1016/j.bjm.2016.10.015

    Article  CAS  Google Scholar 

  13. Paletta ACC, Castro VS, Conte-Junior CA (2019) Shiga toxin-producing and enteroaggregative Escherichia coli in animal, foods, and humans: pathogenicity mechanisms, detection methods, and epidemiology. Curr Microbiol 77:612–620. https://doi.org/10.1007/s00284-019-01842-1

    Article  CAS  PubMed  Google Scholar 

  14. Feng PCH, Delannoy S, Lacher DW et al (2017) Shiga toxin-producing serogroup O91 Escherichia coli strains isolated from food and environmental samples. Appl Environ Microbiol 83:1–13. https://doi.org/10.1128/AEM.01231-17

    Article  CAS  Google Scholar 

  15. Byrne L, Adams N, Jenkins C (2020) Association between Shiga toxin–producing Escherichia coli O157:H7 stx gene subtype and disease severity, England, 2009–2019. Emerg Infect Dis 26:2394–2400. https://doi.org/10.3201/eid2610.200319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carter MQ, Louie JW, Feng D, Zhong W, Brandl MT (2016) Curli fimbriae are conditionally required in Escherichia coli O157: H7 for initial attachment and biofilm formation. Food Microbiol 57:81–89. https://doi.org/10.1016/j.fm.2016.01.006

    Article  PubMed  Google Scholar 

  17. Bowen EE, Coward RJ (2017) Advances in our understanding of the pathogenesis of hemolytic uremic syndromes. Am J Physiol Renal Physiol 314:F454–F461. https://doi.org/10.1152/ajprenal.00376.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cha W, Fratamico PM, Ruth LE, Bowman AS, Nolting JM, Manning SD et al (2018) Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: implications on public health. Int J Food Microbiol 264:8–15. https://doi.org/10.1016/j.ijfoodmicro.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  19. Woube Y, Abdella E, Faraj R, Perry R, Reddy G et al (2021) Prevalence and concentration of Escherichia coli O157:H7 in cattle, products, and the environment in the United States of America: a meta-analysis study. J Epidemiol Public Health Rev 6:1–11. https://doi.org/10.16966/2471-8211.216

    Article  Google Scholar 

  20. Santos AS, Romeiro FG, Sassaki YL et al (2015) Escherichia coli from Crohn’s disease patient displays virulence features of enteroinvasive (EIEC), enterohemorragic (EHEC), and enteroaggregative (EAEC) pathotypes. Gut Pathogens 7:1–10. https://doi.org/10.1186/s13099-015-0050-8

    Article  Google Scholar 

  21. Santos ECC, Castro VS, Cunha-Neto A, Santos LFD et al (2018) Escherichia coli O26 and O113:H21 on carcasses and beef from a slaughterhouse located in Mato Grosso, Brazil. Foodborne Pathog Dis 15:653–659. https://doi.org/10.1089/fpd.2018.2431

    Article  CAS  PubMed  Google Scholar 

  22. Yang SC, Lin CH, Aljuffali IA, Fang JY (2017) Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol 199:811–825. https://doi.org/10.1007/s00203-017-1393-y

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Salazar JK (2016) Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Safety 15:183–205. https://doi.org/10.1111/1541-4337.12175

    Article  CAS  Google Scholar 

  24. Smith DR (2014) Vaccination of cattle against Escherichia coli O157:H7. Microbiol Spectr 2:1–11. https://doi.org/10.1128/microbiolspec.ehec-0006-2013

    Article  Google Scholar 

  25. Williams KJ, Ward MP, Dhungyel OP et al (2014) A longitudinal study of the prevalence and super-shedding of Escherichia coli O157 in dairy heifers. Vet Microbiol 173:101–109. https://doi.org/10.1016/j.vetmic.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  26. Munns KD, Selinger LB, Stanford K et al (2015) Perspectives on super-shedding of Escherichia coli O157:H7 by cattle. Foodborne Pathog Dis 12:89–103. https://doi.org/10.1089/fpd.2014.1829

    Article  CAS  PubMed  Google Scholar 

  27. Arrais BR, Silveira AVBA, Oliveira AF et al (2021) Stx1 and Stx2 subtyping and antimicrobial resistance in Shiga toxin-producing Escherichia coli (STEC) isolates from cattle and sheep feces in the Southeastern region of the State of Goiás, Brazil. Pesq Vet Bras 41:1–7

    Article  Google Scholar 

  28. Bonardi S, Alpigiani I, Tozzoli R et al (2015) Shiga toxin-producing Escherichia coli O157, O26 and O111 in cattle faeces and hides in Italy. Vet Rec Open 20:1–9. https://doi.org/10.1136/vetreco-2014-000061

    Article  Google Scholar 

  29. Kalchayanand N, Worlie D, Wheeler T (2019) A novel aqueous ozone treatment as a spray chill intervention against Escherichia coli O157:H7 on surfaces of fresh beef. J Food Prot 82:1874–1878. https://doi.org/10.4315/0362-028x.jfp-19-093

    Article  CAS  PubMed  Google Scholar 

  30. Krause M, Barth H, Schmidt H (2018) Toxins of locus of enterocyte effacement-negative shiga toxin-producing Escherichia coli. Toxins 10:1–19. https://doi.org/10.3390/toxins10060241

    Article  CAS  Google Scholar 

  31. Schaut RG, Loving CL, Sharma VK (2018) Escherichia coli O157:H7 virulence factors differentially impact cattle and bison macrophage killing capacity. Microb Pathog 118:251–256. https://doi.org/10.1016/j.micpath.2018.03.045

    Article  CAS  PubMed  Google Scholar 

  32. Gyles CL (2007) Shiga toxin-producing Escherichia coli: an overview. Anim Sci 85:E45–E62. https://doi.org/10.2527/jas.2006-508

    Article  CAS  Google Scholar 

  33. Worrall LJ, Bergeron JRC, Strynadka NCJ (2013) Chapter 14: type 3 secretion systems. In: Donnenberg MS (ed) Escherichia coli. Academic Press, Boston, pp 417–450

    Chapter  Google Scholar 

  34. Scheutz F, Teel LD, Beutin L et al (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951–2963. https://doi.org/10.1128/jcm.00860-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karmali MA, Gannon V, Sargeant JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140:360–370. https://doi.org/10.1016/j.vetmic.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  36. Newton HJ, Sloan J, Bulach DM et al (2009) (2009) Shiga toxin–producing Escherichia coli strains negative for locus of enterocyte effacement. Emerg Infect Dis 15:372–380. https://doi.org/10.3201/eid1502.080631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karmali MA (2017) Emerging public health challenges of Shiga toxin–producing Escherichia coli related to changes in the pathogen, the population, and the environment. Clin Infect Dis 64:371–376. https://doi.org/10.1093/cid/ciw708

    Article  CAS  PubMed  Google Scholar 

  38. Dean-Nystrom EA, Bosworth BT, Cray WC Jr, Moon HW (1997) Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infect Immun 65:1842–1848. https://doi.org/10.1128/iai.65.5.1842-1848.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barth SA, Menge C, Eichhorn I et al (2016) The accessory genome of Shiga toxin-producing Escherichia coli defines a persistent colonization type in cattle. Appl Environ Microbiol 82:5455–5464. https://doi.org/10.1128/aem.00909-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Menge C (2020) The Role of Escherichia coli Shiga toxins in STEC colonization of cattle. Toxins 12:2–37. https://doi.org/10.3390/toxins12090607

    Article  CAS  Google Scholar 

  41. ISO (2017) ISO 16654:2001/AMD 1:2017 Microbiology of food and animal feeding stuffs — horizontal method for the detection of Escherichia coli O157 — Amendment 1: Annex B: Result of interlaboratory studies. https://www.iso.org/standard/29821.html. Accessed 21 Jan 2022

  42. Conrad CC, Stanford K, MCallister TA et al (2016) Competition during enrichment of pathogenic Escherichia coli may result in culture bias. Facets 1:114–126. https://doi.org/10.1139/facets-2016-0007

    Article  Google Scholar 

  43. Madic J (2010) Methods for detection of shiga-toxin producing Escherichia coli (STEC). In: Madic MV (ed) Detection of Bacteria, Viruses, Parasites and Fungi. Springer, Italy, pp 53–86

    Chapter  Google Scholar 

  44. Verhaegen B, van Damme I, Heyndrickx M et al (2016) Evaluation of detection methods for non-O157 Shiga toxin-producing Escherichia coli from food. Int J Food Microbiol 219:64–70. https://doi.org/10.1016/j.ijfoodmicro.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  45. Yeni F, Acar S, Polat ÖG, Soyer Y, Alpas H (2014) Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40:359–367. https://doi.org/10.1016/j.foodcont.2013.12.020

    Article  CAS  Google Scholar 

  46. Gill A, Huszczynski G, Gauthier M et al (2014) Evaluation of eight agar media for the isolation of Shiga toxin-producing Escherichia coli. J Microbiol Methods 96:6–11. https://doi.org/10.1016/j.mimet.2013.10.022

    Article  PubMed  Google Scholar 

  47. Brasil (2018) INSTRUÇÃO NORMATIVA Nº 60, DE 20 DE DEZEMBRO DE 2018. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/56641896. Accessed 21 Jan 2022

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Gabrielle Fernanda dos Santos, Felipe Gaia de Sousa; methodology: Gabrielle Fernanda dos Santos, Felipe Gaia de Sousa; formal analysis and literature investigation: Felipe Gaia de Sousa; writing—original draft preparation: Gabrielle Fernanda dos Santos, Felipe Gaia de Sousa, Suzane Lilian Beier, Ana Cristina Ribeiro Mendes, Angela Maia Gonçalves e Souza Leão; writing—review and editing: Gabrielle Fernanda dos Santos, Felipe Gaia de Sousa, Suzane Lilian Beier, Ana Cristina Ribeiro Mendes, Angela Maia Gonçalves e Souza Leão; supervision: Felipe Gaia de Sousa.

Corresponding author

Correspondence to Felipe Gaia de Sousa.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Mariana X Byndloss.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, G.F., de Sousa, F.G., Beier, S.L. et al. Escherichia coli O157:H7 strains in bovine carcasses and the impact on the animal production chain. Braz J Microbiol 54, 2243–2251 (2023). https://doi.org/10.1007/s42770-023-01034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01034-x

Keywords

Navigation