Skip to main content

Advertisement

Log in

Diversity analysis of endophytes with antimicrobial and antioxidant potential from Viola odorata: an endemic plant species of the Himalayas

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Viola odorata, also known as “Banafshah” in high altitudes of Himalayas, is well known for its pharmaceutical importance in Ayurvedic and Unani medicinal system. The plant is a source of various drugs for its anti-inflammatory, diaphoretic, diuretic, emollient, expectorant, antipyretic, and laxative properties. The endophytes of plants have been reported for their role in modulating various physiological and biological processes of the host plants. In the present study, a total of 244 endophytes were isolated in pure cultures from the roots of Viola odorata, and genetic diversity was evaluated using amplified ribosomal DNA restriction analysis (ARDRA) and enterobacterial repetitive intergenic consensus (ERIC). The molecular fingerprinting revealed variation among various rRNA types among morphologically different endophytes based on ARDRA and ERIC-PCR. The screening of endophytes showed antimicrobial activity of 11 bacterial isolates and one actinomycete SGA9 against various pathogens Bacillus cereus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The antioxidant activity revealed the majority of the bacterial isolates able to scavenge the free radical in the range of 10–50% and 8 bacterial isolates in the range of 50–85%. Principal component analysis separated eight isolates away from the central eclipse and form a separate group based on antimicrobial and antioxidant potential. The identification of these eight isolates showed affiliation with different species of the genus Enterobacter, Microbacterium, Pseudomonas, Rhizobium, and Streptomyces. This is the first report on the characterization of endophytic bacteria and actinomycetes from endemic Viola odorata. Results suggested that these endophytes could be explored for the production of antimicrobial and antioxidant products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Q, Li J, Zhang L, Pan C, Yang N, Sun K, He C (2021) Gibberellins are required for dimorphic flower development in Viola philippica. Plant Sci 303:110749. https://doi.org/10.1016/j.plantsci.2020.110749

    Article  CAS  PubMed  Google Scholar 

  2. Yousefnia S, Naseri D, SeyedForootan F, Tabatabaeian M, Moattar F, Ghafghazi T, Nasr Esfahani MH, Ghaedi K (2020) Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells. Clin Transl Oncol 22(9):1619–1634. https://doi.org/10.1007/s12094-020-02307-9

    Article  CAS  PubMed  Google Scholar 

  3. Buabeid MA, Arafa EA, Hassan W, Murtaza G (2020) In silico prediction of the mode of action of Viola odorata in diabetes. Biomed Res Int 2020:2768403. https://doi.org/10.1155/2020/2768403

  4. Tafazoli V, Shahriari M, Heydari M, Nikbakht HA, Zarshenaas MM, Nimrouzi M (2020) The Effect of Viola odorata L. oil for fever in children: a randomized triple-blinded placebo-controlled clinical trial. Curr Drug Discov Technol 17(5):696–703. https://doi.org/10.2174/1570163816666190620142256

    Article  CAS  PubMed  Google Scholar 

  5. Rizwan K, Khan SA, Ahmad I, Rasool N, Ibrahim M, Zubair M, Jaafar HZ, Manea R (2019) A Comprehensive review on chemical and pharmacological potential of Viola betonicifolia: A plant with multiple benefits. molecules. 24(17):3138. https://doi.org/10.3390/molecules24173138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saleem U, Hira S, Anwar F, Shah MA, Bashir S, Baty RS, Badr RH, Blundell R, Batiha GE, Ahmad B (2021) Pharmacological screening of Viola odorata L. for memory-enhancing effect via modulation of oxidative stress and inflammatory biomarkers. Front Pharmacol 12:664832. https://doi.org/10.3389/fphar.2021.664832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akhbari M, Batooli H, Kashi FJ (2012) Composition of essential oil and biological activity of extracts of Viola odorata L. from central Iran. Nat Prod Res 26(9):802–809. https://doi.org/10.1080/14786419.2011.558013

    Article  CAS  PubMed  Google Scholar 

  8. Chen QB, Aisa HA (2017) Alkaloid constituents from Viola tianschanica. Phytochem 144:233–242. https://doi.org/10.1016/j.phytochem.2017.09.011

    Article  CAS  Google Scholar 

  9. Aslam L, Kaur R, Sharma V, Kapoor N, Mahajan R (2021) Isolation and characterization of cyclotides from the leaves of Viola odorata L. using peptidomic and bioinformatic approach. 3 Biotech 11(5):211. https://doi.org/10.1007/s13205-021-02763-2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feyzabadi Z, Ghorbani F, Vazani Y, Zarshenas MM (2017) A critical review on phytochemistry, pharmacology of Viola odorata L. and related multipotential products in traditional Persian medicine. Phytother Res. 31(11):1669–1675. https://doi.org/10.1002/ptr.5909

    Article  PubMed  Google Scholar 

  11. Shayesteh M, Vaez-Mahdavi MR, Shams J, Kamalinejad M, Faghihzadeh S, Gholami-Fesharaki M, Gharebaghi R, Heidary F (2020) Effects of Viola odorata as an add-on therapy on insomnia in patients with obsession or depression: a pilot randomized double-blind placebo-controlled trial. J Altern Complement Med 26(5):398–408. https://doi.org/10.1089/acm.2019.0254

    Article  PubMed  Google Scholar 

  12. Yazdi N, Kardooni M, Namjuyan F, Vardanjani HM, Tafazoli V, Jaladat AM (2020) Efficacy of sweet violet (Viola odorata) flower oil on the symptoms of adults with allergic rhinitis: a double-blind randomized placebo-controlled clinical trial. Complement Ther Med 51:102408. https://doi.org/10.1016/j.ctim.2020.102408

    Article  PubMed  Google Scholar 

  13. Zhu H, Qin SS, Zhang N, Yang DW, Han HR, Wei KH, Li MH (2015) Chemical constituents and biological activities of plants from the genus Viola. Chem Biodivers 12(12):1777–1808. https://doi.org/10.1002/cbdv.201400240

    Article  CAS  PubMed  Google Scholar 

  14. Katoch M, Paul A, Singh G, Sridhar SNC (2017) Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors. BMC Complement Altern Med 17(1):385. https://doi.org/10.1186/s12906-017-1893-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59. https://doi.org/10.1007/s00253-012-4128-7

    Article  CAS  PubMed  Google Scholar 

  17. Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 20(4):400. https://doi.org/10.3389/fmicb.2013.00400

    Article  Google Scholar 

  18. Miller KI, Qing C, Sze DM, Roufogalis BD, Neilan BA (2012) Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microb Ecol 64:431–449. https://doi.org/10.1007/s00248-012-0044-8

    Article  PubMed  Google Scholar 

  19. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268. https://doi.org/10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  20. Kaundal R, Kumar M, Kumar S, Singh D, Kumar D (2022) Polyphenolic profiling, antioxidant, and antimicrobial activities revealed the quality and adaptive behavior of Viola species, a dietary spice in the Himalayas. Molecules 27(12):3867. https://doi.org/10.3390/molecules27123867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70(12):7520–7529. https://doi.org/10.1128/AEM.70.12.7520-7529.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Versalovic J, Schneider M, de Brulin FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  23. Yagi S, Drouart N, Bourgaud F, Henry M, Chapleur Y, Laurain-Mattar D (2012) Antioxidant and antiglycation properties of Hydnora johannis roots. S Afr J Bot 84:124–127

    Article  Google Scholar 

  24. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56:8418–8426

    Article  CAS  PubMed  Google Scholar 

  25. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bafana A (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29(1):63–74

    Article  CAS  PubMed  Google Scholar 

  28. Bergottini VM, Hervé V, Sosa DA, Otegui MB, Zapata PD, Junier P (2017) Exploring the diversity of the root-associated microbiome of Ilex paraguariensis St. Hil. (Yerba Mate). Appl Soil Ecol 109:23–31

    Article  Google Scholar 

  29. Dutta J, Handique PJ, Thakur D (2015) Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front Microbiol 6:1252

    Article  PubMed  PubMed Central  Google Scholar 

  30. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899

    Article  CAS  Google Scholar 

  31. Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 4(1):91–104

    Google Scholar 

  32. Zhao J, Wu X, Nie C, Wu T, Dai W, Liu H, Yang R (2012) Analysis of unculturable bacterial communities in tea orchard soils based on nested PCR-DGGE. World J Microbiol Biotechnol 28(5):1967–1979

    Article  CAS  PubMed  Google Scholar 

  33. Jin F, Ding Y, Ding W, Reddy MS, Fernando WG, Du B (2011) Genetic diversity and phylogeny of antagonistic bacteria against Phytophthora nicotianae isolated from tobacco rhizosphere. Int J Mol Sci 12(5):3055–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yadav G, Meena M (2021) Bioprospecting of endophytes in medicinal plants of Thar Desert: an attractive resource for biopharmaceuticals. Biotechnol Rep 30:e00629

    Article  CAS  Google Scholar 

  35. Gómez OC, Luiz JHH (2018) Endophytic fungi isolated from medicinal plants: future prospects of bioactive natural products from Tabebuia/Handroanthus endophytes. Appl Microbiol Biotechnol 102(21):9105–9119

    Article  PubMed  Google Scholar 

  36. Photolo MM, Mavumengwana V, Sitole L, Tlou MG (2020) Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. Int J Microbiol 2020:9483670. https://doi.org/10.1155/2020/9483670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chawawisit K, Lertcanawanichakul M (2008) Minimum inhibitory concentration (MIC) of crude preparations of Brevibacillus laterosporus SA14 bioactive material compared to vancomycin and oxacillin, against clinical isolates of methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 24:2199–2204

    Article  CAS  Google Scholar 

  38. Pokusaeva K, Kuisiene N, Jasinskyte D, Rutiene K, Saleikiene J et al (2009) Novel bacteriocins produced by Geobacillus stearothermophilus. Cent Eur J Biol 4:196–203

    CAS  Google Scholar 

  39. Zarrabi M, Dalirfardouei R, Sepehrizade Z, Kermanshahi RK (2013) Comparison of the antimicrobial effects of semipurified cyclotides from Iranian Viola Odorata against some of plant and human pathogenic bacteria. J Appl Microbiol 115(2):367–375. https://doi.org/10.1111/jam.12251

    Article  CAS  PubMed  Google Scholar 

  40. Tan BL, Norhaizan ME, Liew WPP, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gautam VS, Singh A, Kumari P, Nishad JH, Kumar J, Yadav M, Bharti R, Prajapati P, Kharwar RN (2022) Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch Microbiol 204:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hajdú Z, Hohmann J, Forgo P, Martinek T, Dervarics M, Zupkó I, Falkay G, Cossuta D, Máthé I (2007) Diterpenoids and flavonoids from the fruits of Vitex agnus-castus and antioxidant activity of the fruit extracts and their constituents. Phytother Res 21:391–394

    Article  PubMed  Google Scholar 

  43. Sultana B, Anwar F, Przybylski R (2007) Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, and Eugenia jambolana Lam. trees. Food Chem 104(3):1106–1114

    Article  CAS  Google Scholar 

  44. Swarnalatha Y, Saha B, Choudary L (2015) Bioactive compound analysis and antioxidant activity of endophytic bacterial extract from Adhathoda beddomei. Asian J Pharm Clin Res 8:70–72

    Google Scholar 

  45. Iantas J, Savi DC, Schibelbein RDS, Noriler SA, Assad BM, Dilarri G et al (2021) Endophytes of Brazilian medicinal plants with activity against phytopathogens. Front Microbiol 12:714750

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rahman L, Shinwari ZK, Iqrar I, Rahman L, Tanveer F (2017) An assessment on the role of endophytic microbes in the therapeutic potential of Fagonia indica. Ann Clin Microbiol Antimicrob 16:53

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rafat A, Philip K, Muniandy S (2012) A novel source of bioactive compounds: endophytic bacteria isolated from Centella asiatica. J Pure Appl Microbiol 6(1):11–20

    CAS  Google Scholar 

  48. Sulistiyani S, Ardyati T, Winarsih S (2016) Antimicrobial and antioxidant activity of endophyte bacteria associated with Curcuma longa rhizome. J Exp Life Sci 6(1):45–51

    Article  Google Scholar 

  49. Singha KM, Singh B, Pandey P (2021) Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage. Sci Rep 11(1):1–17

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Medicinal Plant Board, New Delhi, GOI (Project No. R&D/HP-01/2020-21-NMPB-IV A) for providing necessary financial benefits and the College of Horticulture and Forestry, Neri, Hamirpur for providing infrastructural facilities. The authors also acknowledge the Department of Food Science and Technology and the Department of Fruit Science for their help during the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Salwan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luiz Henrique Rosa

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 1483 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salwan, R., Rana, A., Saini, R. et al. Diversity analysis of endophytes with antimicrobial and antioxidant potential from Viola odorata: an endemic plant species of the Himalayas. Braz J Microbiol 54, 2361–2374 (2023). https://doi.org/10.1007/s42770-023-01010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01010-5

Keywords

Navigation