Skip to main content
Log in

Antarctic heavy metal pollution and remediation efforts: state of the art of research and scientific publications

  • Environmental Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In Antarctica, human activities have been reported to be the major cause of the accumulation of heavy metal contaminants. A comprehensive bibliometric analysis of publications on heavy metal contamination in Antarctica from year 2000 to 2020 was performed to obtain an overview of the current landscape in this line of research. A total of 106 documents were obtained from Scopus, the largest citation database. Extracted data were analysed, and VOSviewer software was used to visualise trends. The result showed an increase in publications and citations in the past 20 years indicating the rising interest on heavy metal contamination in the Antarctic region. Based on the analysis of keywords, the publications largely discuss various types of heavy metals found in the Antarctic water and sediment. The analysis on subject areas detects multiple disciplines involved, wherein the environmental science was well-represented. The top countries and authors producing the most publication in this field were from Australia, China, Brazil and Chile. Numerous efforts have been exercised to investigate heavy metal pollution and its mitigation approaches in the region in the past decades. This paper not only is relevant for scholars to understand the development status and trends in this field but also offers clear insights on the future direction of Antarctic heavy metal contamination and remediation research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yin X, Liu X, Sun L, Zhu R, Xie Z, Wang YA (2006) 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Sci Total Environ 371:252–257. https://doi.org/10.1016/j.scitotenv.2006.07.022

    Article  CAS  PubMed  Google Scholar 

  2. Balks MR, Paetzold RF, Kimblr JM, Aislabie J, Campbell IB (2002) Effects of hydrocarbon spills on the temperature and moisture regimes of crysols in the Ross Sea region. Ant Sci 14:319–326. https://doi.org/10.1017/S0954102002000135

    Article  Google Scholar 

  3. British Antarctic Survey. Available (2021) https://www.bas.ac.uk/about/antarctica/geography/weather/temperatures/. Accessed 6 June 2021

  4. Hughes KA, Cowan DA, Wilmotte A (2015) Protection of Antarctic microbial communities – ‘out of sight, out of mind’. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00151

  5. Prus W, Fabiańska MJ, Łabno R (2015) Geochemical markers of soil anthropogenic contaminants in polar scientific stations nearby (Antarctica, King George Island). Sci Total Environ 518–519:266–279. https://doi.org/10.1016/j.scitotenv.2015.02.096

    Article  CAS  PubMed  Google Scholar 

  6. Nations Online (2021) Physical map of Antarctica. https://www.nationsonline.org/oneworld/map/antarctica_map.htm. Accessed 6 June 2021.

  7. Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338. https://doi.org/10.1111/j.1574-6976.2002.tb00618.x

    Article  CAS  PubMed  Google Scholar 

  8. Corami F, Capodaglio G, Turetta C, Soggia F, Magi E, Grotti M (2005) Summer distribution of trace metals in the western sector of the Ross Sea, Antarctica. J Environ Monit 7:1256–1264. https://doi.org/10.1039/b507323p

    Article  CAS  PubMed  Google Scholar 

  9. Claridge GGC, Campbell IB, Powell HKJ, Amin ZH, Balks MR (1995) Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica. Antarct Sci 7:9–14. https://doi.org/10.1017/S0954102095000034

    Article  Google Scholar 

  10. Santos IR, Silva-Filho EV, Schaefer CEGR, Albuquerque-Filho MR, Campos LR (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194. https://doi.org/10.1016/j.marpolbul.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  11. Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179. https://doi.org/10.1007/s00792-005-0498-4

    Article  CAS  PubMed  Google Scholar 

  12. Szopińska M, Namieśnik J, Polkowska Ż (2016) How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, Vol 239, Springer, Cham, pp 79–156. https://doi.org/10.1007/398_2015_5008

  13. Huang PM, Wang MC, Wang MK (2005) Mineral–organic– microbial interactions. Encyclopedia of Soils in the Environment. Elsevier, Amsterdam, pp 486–499. https://doi.org/10.1016/B0-12-348530-4/00220-4

  14. dos Santos IR, Silva-Filho EV, Schaefer C, Maria Sella S, Silva CA, Gomes V, Passos MJ, Van Ngan P (2006) Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ Poll 140:304–311. https://doi.org/10.1016/j.envpol.2005.07.007

    Article  CAS  Google Scholar 

  15. Álvarez-Varas R, Morales-Moraga D, González-Acuña D, Klarian SA, Vianna JA (2018) Mercury exposure in Humboldt (Spheniscus humboldti) and Chinstrap (Pygoscelis antarcticus) penguins throughout the Chilean coast and Antarctica. Arch Environ Contam Toxicol 75:75–86. https://doi.org/10.1007/s00244-018-0529-7

    Article  CAS  PubMed  Google Scholar 

  16. Zakaria NN, Convey P, Gomez-Fuentes C, Zulkharnain A, Sabri S, Shaharuddin NA, Ahmad SA (2021) Oil bioremediation in the marine environment of Antarctica: a review and bibliometric keyword cluster analysis. Microorganisms 9:419. https://doi.org/10.3390/microorganisms9020419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zahri KNM, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA (2021) Research trends of biodegradation of cooking oil in Antarctica from 2001 to 2021: a bibliometric analysis based on Scopus database. Int J Environ Res Public Health 18:2050. https://doi.org/10.3390/ijerph18042050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verasoundarapandian G, Wong C-Y, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA (2021) A review and bibliometric analysis on applications of microbial degradation of hydrocarbon contaminants in Arctic marine environment at metagenomic and enzymatic levels. Int J Environ Res Public Health 8:1671. https://doi.org/10.3390/ijerph18041671

    Article  CAS  Google Scholar 

  19. Lim ZS, Wong RR, Wong C, Zulkharnain A, Shaharuddin NA, Ahmad SA (2021) Bibliometric analysis of research on diesel pollution in Antarctica and a review on remediation techniques. Appl Sci 11:1123. https://doi.org/10.3390/app11031123

    Article  CAS  Google Scholar 

  20. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  PubMed  Google Scholar 

  21. Hirsch JE (2005) An index to quantify an individual’s scientific research output. PNAS 102:16569–16572. https://doi.org/10.1073/pnas.0507655102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ebinghaus R, Kock HH, Temme C, Einax JW, Löwe AG, Richter A, Burrows JP, Schroeder WH (2002) Antarctic springtime depletion of atmospheric mercury. Environ Sci Technol 36:1238–1244. https://doi.org/10.1021/es015710z

  23. Snape I, Scouller RC, Stark SC, Stark J, Riddle MJ, Gore DB (2004) Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments. Chemosphere 57:491–504. https://doi.org/10.1016/j.chemosphere.2004.05.042

  24. Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135–145. https://doi.org/10.1016/S0168-6496(03)00135-1

  25. Goutte A, Bustamante P, Barbraud C, Delord K, Weimerskirch H, Chastel O (2014) Demographic responses to mercury exposure in two closely related Antarctic top predators. Ecology 95:1075–1086. https://doi.org/10.1890/13-1229.1

  26. Conlan KE, Kim SL, Lenihan HS, Oliver JS (2004) Benthic changes during 10 years of organic enrichment by McMurdo Station, Antarctica. Mar Pollut Bull 49:43–60. https://doi.org/10.1016/j.marpolbul.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  27. Stark JS, Snape I, Riddle MJ (2003) The effects of petroleum hydrocarbon and heavy metal contamination of marine sediments on recruitment of Antarctic softsediment assemblages: a field experimental investigation. J Exp Mar Biol Ecol 238:21–50. https://doi.org/10.1016/S0022-0981(02)00449-5

  28. McConnell J, Maselli O, Sigl M, Vallelonga P, Neumann T, Anschütz H, Bales RC, Curran MAJ, Das SB, Edwards R, Kipfstuhl S, Layman L, Thomas ER (2014) Antarcticwide array of high-resolution ice core records reveals pervasive lead pollution began in 1889 and persists today. Sci Rep 4:5848. https://doi.org/10.1038/srep05848

  29. Devos P, Menard J (2019) Bibliometric analysis of researching relating to hypertension reported over the period 1997–2016. J Hypertension 37:2116–2122. https://doi.org/10.1097/HJH.0000000000002143

    Article  CAS  Google Scholar 

  30. Kataba-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  31. Warren LA, Haack EA (2001) Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci Rev 54:261–320

    Article  CAS  Google Scholar 

  32. Hamelink JL, Landrum PF, Harold BL, William BH (1994) Bioavailability: physical, chemical and biological interactions. CRC Press, Boca Raton

    Google Scholar 

  33. Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. In: Markert B (ed) Plants as bioindicators: Indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424

    Google Scholar 

  34. Lakatos B, Szentmihályi K, Vinkler P, Balla J, Balla G (2014) The role of essential metal ions in the human organism and their oral supplementation to the human body in deficiency states. Orv Hetil 145:1315–1319

    Google Scholar 

  35. Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxicol Environ Health A 73:114–127. https://doi.org/10.1080/15287390903337100

    Article  CAS  PubMed  Google Scholar 

  36. Harvey LJ, MacArdle HJ (2008) Biomarkers of copper status: brief update. Br J Nutr 99:10–13. https://doi.org/10.1017/S0007114508006806

    Article  CAS  Google Scholar 

  37. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. In: Luch A (ed) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_6

  38. Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  PubMed  Google Scholar 

  39. Wang S, Shi X (2001) Molecular mechanism of metal toxicity and carcinogenesis. Mol Cell Biochem 222:3–9. https://doi.org/10.1023/A:1017918013293

    Article  CAS  PubMed  Google Scholar 

  40. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and molecular mechanism. Arch Toxicol 82:493–512. https://doi.org/10.1007/s00204-008-0313-y

    Article  CAS  PubMed  Google Scholar 

  41. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotech 25:158–165

    Article  CAS  Google Scholar 

  42. Wang G, Fowler BA (2008) Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxic Appl Pharmacol 233:92–99. https://doi.org/10.1016/j.taap.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  43. Huang P-M, Wang M-K, Chiu C-Y (2005) Soil mineral–organic matter–microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia (Jena) 49:609–635. https://doi.org/10.1016/j.pedobi.2005.06.006

    Article  CAS  Google Scholar 

  44. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  45. Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  46. Dick AL (1991) Concentrations and sources of metals in the Antarctic Peninsula aerosol. Geochem Cosmochim Acta 55:1827–1836. https://doi.org/10.1016/0016-7037(91)90027-3

    Article  CAS  Google Scholar 

  47. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662. https://doi.org/10.1021/cr050353m

    Article  CAS  PubMed  Google Scholar 

  48. Driscoll CT, Mason RP, Chan LHM, Jacob DJ, Pirrone N (2013) Mercury as global pollutant: sources, pathways and effects. Environ Sci Technol 47:4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taniguchi S, Montone RC, Bícego MC, Colabuono FI, Weber RR, Sericano JL (2009) Chlorinated pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the fat tissues of seabirds from King George Island, Antarctica. Mar Pollut Bull 58:129–133. https://doi.org/10.1016/j.marpolbul.2008.09.026

    Article  CAS  PubMed  Google Scholar 

  50. Evans C, Brandsma J, Pond DW, Venables HJ, Meredith MP, Witte HJ, Stammerjohn S, Wilson WH, Clarke A, Brussaard CP (2017) Drivers of interannual variability in virioplankton abundance at the coastal western Antarctic Peninsula and the potential effects of climate change. Environ Microbiol 19:1017–1024. https://doi.org/10.1111/1462-2920.13627

    Article  CAS  Google Scholar 

  51. Finger A, Lavers JL, Dann P, Kowalczyk ND, Scarpaci C, Nugegoda D, Orbell JD (2017) Metals and metalloids in Little Penguin (Eudyptula minor) prey, blood and faeces. Environ Pollut 223:567–574. https://doi.org/10.1016/j.envpol.2017.01.059

    Article  CAS  PubMed  Google Scholar 

  52. Espejo W, Celis JE, González-Acuña D, Jara S, Barra R (2014) Concentration of trace metals in excrements of two species of penguins from different locations of the Antarctic Peninsula. Polar Biol 37:675–683. https://doi.org/10.1007/s00300-014-1468-z

    Article  Google Scholar 

  53. Zvěřina O, Coufalík P, Brat K, Červenka R, Kuta J, Mikeš O, Komárek J (2017) Leaching of mercury from seal carcasses into Antarctic soils. Environ Sci Pollut Res Int 24:1242–1431. https://doi.org/10.1007/s11356-016-7879-3

    Article  CAS  Google Scholar 

  54. Bargagli R (2008) Environmental contamination in Antarctic ecosystem. Sci Total Environ 400:212–226. https://doi.org/10.1016/j.scitotenv.2008.06.062

    Article  CAS  PubMed  Google Scholar 

  55. Poland JS, Riddle MJ, Zeeb BA (2003) Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec 39:369–383. https://doi.org/10.1017/S0032247403002985

    Article  Google Scholar 

  56. Cunningham L, Raymond B, Snape I, Riddle MJ (2005) Benthic diatom communities as indicators of anthropogenic metal contamination at Casey Station, Antarctica. J Paleolimnol 33:499–513. https://doi.org/10.1007/s10933-005-0814-0

    Article  Google Scholar 

  57. Aislabie J, Mcleod M, Fraser R (1998) Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl Microbiol 49:210–214. https://doi.org/10.1007/s002530051160

    Article  CAS  Google Scholar 

  58. Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188. https://doi.org/10.1007/s003000050025

    Article  Google Scholar 

  59. Guerra MBB, Neto EL, Prianti MTA, Pereira-Filho ER, Schaefer CEGR (2013) Post-fire study of the Brazilian Scientific Antarctic Station: toxic element contamination and potential mobility on the surrounding environment. Microchem J 110:21–27. https://doi.org/10.1016/j.microc.2013.01.007

    Article  CAS  Google Scholar 

  60. Snape I, Riddle MJ, Stark JS, Cole CM, King CK, Duquesne S, Gore DB (2001) Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec 37:199–214. https://doi.org/10.1017/S0032247400027236

    Article  Google Scholar 

  61. Sheppard D, Claridge G, Campbell I (2000) Metal contamination of soils at Scott base, Antarctica. Appl Geochem 15:513–530. https://doi.org/10.1016/S0883-2927(99)00055-4

    Article  CAS  Google Scholar 

  62. Aranson RB, Thatje S, McClintock JB, Hughes KA (2011) Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci 1223:82–107. https://doi.org/10.1111/j.1749-6632.2010.05926.x

    Article  Google Scholar 

  63. Kennicutt MC, McDonald SJ, Sericano JL, Boothe P, Oliver J, Safe S, Presley BJ, Liu H, Wolfe D, Wade TL, Crockett A, Bockus D (1995) Human contamination of the marine environment – Arthur Harbor and McMurdo Sound, Antarctica. Environ Sci Technol 29:1279–1287. https://doi.org/10.1021/es00005a600

    Article  CAS  Google Scholar 

  64. Tarasenko S (2020) Wastewater treatment in Antarctica GCAS 2008/2009. https://ir.canterbury.ac.nz/bitstream/handle/10092/14196/GCAS_11Project_Tarasenko.pdf?sequence=1 Accessed 31December 2020

  65. Chu W-L, Dang N-L, Kok Y-Y, Yap K-SI, Phang SM (2019) Heavy metal pollution in Antarctica and its potential impacts on algae. Polar Sci 20:75–83. https://doi.org/10.1016/j.polar.2018.10.004

    Article  Google Scholar 

  66. International Association of Antarctica Tour Operators (IAATO) (2021) Antarctic visitor figures 2019–2020. http://iaato.org/tourism-statistics Accessed 14 March 2021

  67. Vouk VB, Piver WT (1983) Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity. Environ Health Perspect 47:201–225. https://doi.org/10.1289/ehp.8347201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Planchon FAM, Boutron CF, Barbante C, Cozzi G, Gaspari V, Wolff EW, Ferrari CP, Cescon P (2002) Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet Sci Lett 200:207–222. https://doi.org/10.1016/S0012-821X(02)00612-X

    Article  CAS  Google Scholar 

  69. Mishra VK, Kim KH, Hong S, Lee K (2004) Aerosol composition and its sources at the King Sejong Station, Antarctic Peninsula. Atmos Environ 38:4069–4084. https://doi.org/10.1016/j.atmosenv.2004.03.052

    Article  CAS  Google Scholar 

  70. Hur SD, Cunde X, Hong S, Barbante C, Gabrielli P, Lee K, Boutron CF, Ming Y (2007) Seasonal patterns of heavy metal deposition to the snow on Lambert Glacier basin, East Antarctica. Atmos Environ 41:8567–8578. https://doi.org/10.1016/j.atmosenv.2007.07.012

    Article  CAS  Google Scholar 

  71. Van de Velde K, Vallelonga P, Candelone JP, Rosman KJR, Gaspari V, Cozzi G, Barbante C, Udisti R, Cescon P, Boutron CF (2005) Pb isotope record over one century in snow from Victoria land, Antarctica. Earth Planet Sci Lett 232:95–108. https://doi.org/10.1016/j.epsl.2005.01.007

    Article  CAS  Google Scholar 

  72. Riddle M, Snape I, Deprez P, Maggs T (2000) Contaminants in the Antarctic environment: I. The scale of the problem. Sixth International Symposium on Cold Region Development, Hobart. International Association of Cold Regions Development Studies, Hobart, pp 120–123

  73. Hussein H, Farag S, Moawad H (2004) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab J Biotechnol 7:13–22

    Google Scholar 

  74. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. https://doi.org/10.1016/j.biortech.2013.12.102

    Article  CAS  PubMed  Google Scholar 

  75. Secretariat of the Antarctic Treaty (2020). The Protocol on Environmental Protection to the Antarctic Treaty. https://www.ats.aq/e/protocol.html Accessed 31 December 2020

  76. Northcott KA, Snape I, Connor MA, Stevens GW (2003) Water treatment design for site remediation at Casey Station, Antarctica: site characterisation and particle separation. Cold Reg Sci Technol 37:169–185. https://doi.org/10.1016/S0165-232X(03)00039-9

    Article  Google Scholar 

  77. Statham TM, Stark SC, Snape I, Stevens GW, Mumford KA (2016) A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: a field assessment at Casey Station, Antarctica. Chemosphere 147:368–375. https://doi.org/10.1016/j.chemosphere.2015.12.133

    Article  CAS  PubMed  Google Scholar 

  78. Mumford KA, Rayner JL, Snape I, Stark SC, Stevens GW (2013) Design, installation and preliminary testing of permeable reactive barrier for diesel fuel remediation at Casey Station, Antarctica. Cold Reg Sci Technol 96:96–107. https://doi.org/10.1016/j.coldregions.2013.06.002

    Article  Google Scholar 

  79. Statham TM, Mason LR, Mumford KA, Stevens GW (2015) The specific reactive surface area of granular zero-valent iron in metal contaminant removal: column experiments and modelling. Water Resour 77:24–34. https://doi.org/10.1016/j.watres.2015.03.007

    Article  CAS  Google Scholar 

  80. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  81. Mulligan CN, Yong R, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. https://doi.org/10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  82. Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A. (ed.) Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications. InTech, Rijeka, pp 605–632. https://doi.org/10.5772/19546

  83. Alcázar-Medina F, Núñez-Núñez C, Rodríguez-Rosales M, Valle-Cervantes S, Alarcón-Herrera M, Proal-Nájera J (2019) Lead removal from aqueous solution by spherical agglomeration using an extract of Agave lechuguilla Torr. as biosurfactant. Rev Mex Ing Quím 19:71–84. https://doi.org/10.24275/rmiq/Bio491

    Article  Google Scholar 

  84. Buendía-González L, Cruz-Sosa F, Rodríguez-Huezo M, Barrera-Díaz C, Hernández-Jaimes C, Orozco-Villafuerte J (2019) In vitro simultaneous accumulation of multiple heavy metals by Prosopis laevigata seedlings cultures. Rev Mex Ing Quím 18:1167–1177. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Buendia

    Article  Google Scholar 

  85. Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides – 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156. https://doi.org/10.1007/s11157-005-2169-4

    Article  CAS  Google Scholar 

  86. Powell SM, Ferguson SH, Snape I, Siciliano SD (2006) Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environ Sci Technol 40:2011–2017

    Article  CAS  PubMed  Google Scholar 

  87. Camenzuli D, Freidman BL, Statham TM, Mumford KA, Gore D (2013) On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review. Polar Res 33:21522. https://doi.org/10.3402/polar.v32.21522

    Article  Google Scholar 

  88. Kikuchi R, Gorbacheva TT, Gerardo R (2006) A pilot-scale example of phytoremediation in the arctic area, comparison of zones placed at different distances from a metal emission source. Environ Biotechnol 2:37–45

    Google Scholar 

  89. Burges A, Alkorta I, Epelde L, Garbisu C (2018) From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Inter J phytoremediat 20:384–397

    Article  CAS  Google Scholar 

  90. Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359. https://doi.org/10.1016/0167-7799(93)90158-6

    Article  CAS  PubMed  Google Scholar 

  91. Lee GLY, Ahmad SA, Yasid NA, Zulkharnain A, Convey P, Johari WLW, Alias SA, Gonzalez-Rocha G, Shukor MY (2018) Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biol 41:553–562. https://doi.org/10.1007/s00300-017-2216-y

    Article  Google Scholar 

  92. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331. https://doi.org/10.1016/j.ymben.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  93. Margesin R, Fonteyne PA, Red B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75. https://doi.org/10.1016/j.resmic.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  94. Coelho LM, Rezende HC, Coelho LM, de Sousa PAR, Melo DFO, Coelho NMM (2015) Bioremediation of polluted waters using microorganisms. In: Shiomi N (ed.) Advances in Bioremediation of Wastewater and Polluted Soil. Intech, Rijeka. https://doi.org/10.5772/60770

  95. Verma JP, Jaiswal DK (2016) Advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1555. https://doi.org/10.3389/fmicb.2015.01555

    Article  PubMed Central  Google Scholar 

  96. de Jesus HE, Peixoto RS, Rosado AS (2015) Bioremediation in Antarctic soils. Pet Environ Biotechnol 6:248. https://doi.org/10.4172/2157-7463.1000248

    Article  CAS  Google Scholar 

  97. Koppel DJ, Adams MS, King CK, Jolley DF (2019) Preliminary study of cellular metal accumulation in two Antarctic marine microalgae – implications for mixture interactivity and dietary risk. Environ Poll 252:1582–1592. https://doi.org/10.1016/j.envpol.2019.06.003

    Article  CAS  Google Scholar 

  98. Ahmad SA, Shukor MY, Shamaan NA, MacCormack WP, Syed MA (2013) Molybdate reduction to molybdenum blue by an Antarctic bacterium. BioMed Res Int 2013:871941. https://doi.org/10.1155/2013/871941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Darham S, Gomez-Fuentes C, Zulkharnain A, Sabri S, Calisto-Ulloa N, Ramirez-Moreno N, Ahmad SA (2019) Isolation and identification of molybdenum-reducing cold-adapted marine bacteria isolated from Bernardo O’Higgins Riquelme Base Station, Antarctica. Malays J Biochem Mol Biol 21:8–15

    Google Scholar 

  100. Glatstein DA, Bruna N, Gallardo-Benavente C, Bravo D, Pérez MEC, Francisca FM, Pérez-Donoso JM (2018) Arsenic and cadmium bioremediation by Antarctic bacteria capable of biosynthesizing CdS fluorescent nanoparticles. J Environ Eng 144:04017107. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001293

    Article  Google Scholar 

  101. Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C Toxicol Pharmacol 133:3–35. https://doi.org/10.1016/S1532-0456(02)00112-6

    Article  PubMed  Google Scholar 

  102. Cabrita MT, Padeiro A, Amaro E, dos Santos MC, Leppe M, Verkulich S, Hughes KA, Peter HU, Canário J (2017) Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antarctica. Mar Pollut Bull 121:192–200. https://doi.org/10.1016/j.marpolbul.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  103. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931. https://doi.org/10.1021/es048947e

    Article  CAS  PubMed  Google Scholar 

  104. Tomova I, Stoilova-Disheva M, Vasileva-Tonkova E (2014) Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, East Antarctica. Polish Polar Res 35:593–607. https://doi.org/10.2478/popore-2014-0028

    Article  Google Scholar 

  105. Tomova I, Stoilova-Disheva M, Lazarkevich I, Vasileva-Tonkova E (2015) Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Front Life Sci 8:348–357. https://doi.org/10.1080/21553769.2015.1044130

    Article  CAS  Google Scholar 

  106. Ghani B, Takai M, Hisham NZ, Kishimoto N, Ismail AKM, Tano T, Sugio T (1993) Isolation and characterization of a Mo6+-reducing bacterium. Appl Environ Microbiol 59:1176–1180. https://doi.org/10.1128/aem.59.4.1176-1180.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Halmi MIE, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, Syed MA, Ahmad SA (2013) Hexavalent molybdenum reduction to Mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14. BioMed Rese Int 2013:e384541. https://doi.org/10.1155/2013/384541

    Article  CAS  Google Scholar 

  108. Gupta P, Chaturvedi P, Pradhan S, Delille D, Shivaji S (2006) Marinomonas polaris sp. nov., a psychrohalotolerant strain isolated from coastal sea water off the subantarctic Kerguelen islands. Int J Syst Bacteriol 56:361–364. https://doi.org/10.1099/ijs.0.63921-0

    Article  CAS  Google Scholar 

  109. Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Evol Microbiol 47:1040–1047. https://doi.org/10.1099/00207713-47-4-1040

    Article  CAS  Google Scholar 

  110. Gallardo C, Monrás JP, Plaza DO, Collao B, Saona LA, Durán-Toro V, Venegas FA, Soto C, Ulloa G, Vásquez CC, Bravo D, Pérez-Donoso JM (2014) Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J Biotechnol 187:108–115. https://doi.org/10.1016/j.jbiotec.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  111. Xue M, Wang X, Wang H, Tang B (2011) The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta 83:1680–1686. https://doi.org/10.1016/j.talanta.2010.11.064

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Putra Malaysia, Sultan Mizan Antarctic Research Foundation (YPASM), Shibaura Institute of Technology, University Teknologi MARA, Universiti Sains Malaysia, Centro de Investigacion y Monitoreo Ambiental Antàrctico (CIMAA), Universidad de Magallanes, and Hoseo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aqlima Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Melissa Fontes Landell

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darham, S., Zakaria, N.N., Zulkharnain, A. et al. Antarctic heavy metal pollution and remediation efforts: state of the art of research and scientific publications. Braz J Microbiol 54, 2011–2026 (2023). https://doi.org/10.1007/s42770-023-00949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00949-9

Keywords

Navigation