Skip to main content
Log in

Anti-Pythium insidiosum activity of MSI-78, LL-37, and magainin-2 antimicrobial peptides

  • Veterinary Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

We investigated the anti-Pythium insidiosum activity of the antimicrobial peptides (AMPs) MSI-78, LL-37, and magainin-2. To detect the minimum inhibitory concentration (MIC), fourteen clinical strains were incubated with the AMPs following the CLSI M38-A2 protocol. All three AMPs showed antimicrobial activity with an MIC range of 20–80 mg/L against all strains. We concluded that the evaluated AMPs have great potential as anti-Pythium insidiosum agents, and their activity deserves to be more explored in further research.

Lay Abstract

Antimicrobial peptides were tested against Pythium insidiosum, a microorganism that causes a difficult-to-treat disease in animals and humans. These peptides have been shown to be able to kill P. insidiosum and may be candidates for use in the treatment of this infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Mendoza M. Pythium insidiosum and mammalian hosts. In: Lamour K, Kamoun S, editors. Oomycete Genetics and Genomics. Diversity, Interaction, and Research Tools, Wiley-Blackwell; 2009, p. 387–405. https://doi.org/10.1002/9780470475898.ch19

  2. Gaastra W, Lipman LJ, de Cock AW et al (2010) Pythium insidiosum: An Overview. Vet Microbiol 146:1–16. https://doi.org/10.1016/j.vetmic.2010.07.019

    Article  PubMed  Google Scholar 

  3. Mendoza L, Newton JC (2005) Immunology and immunotherapy of the infections caused by Pythium insidiosum. Med Mycol 43:477–486. https://doi.org/10.1080/13693780500279882

    Article  CAS  PubMed  Google Scholar 

  4. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171. https://doi.org/10.3109/07388551.2011.594423

    Article  CAS  PubMed  Google Scholar 

  5. Cicero AFG, Fogacci F, Colletti A (2017) Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review: Bioactive peptides effects. Br J Pharmacol 174:1378–1394. https://doi.org/10.1111/bph.13608

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen SD, Beverly RL, Qu Y, Dallas DC (2017) Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem 232:673–682. https://doi.org/10.1111/bph.13608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Azevedo MI, Botton SA, Pereira DIB et al (2012) Phylogenetic relationships of Brazilian isolates of Pythium insidiosum based on ITS rDNA and cytochrome oxidase II gene sequences. Vet Microbiol 159:141–148. https://doi.org/10.1016/j.vetmic.2012.03.030

    Article  CAS  PubMed  Google Scholar 

  8. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard – Second Edition. CLSI document M38-A2. Wayne, PA: Clinical and Laboratory Standard Institute; 2008.

  9. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protocols 3:163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  10. Pereira DIB, Santurio JM, Alves SH et al (2007) Caspofungin in vitro and in vivo activity against Brazilian Pythium insidiosum strains isolated from animals. J Antimicrob Chemother 60:1168–1171. https://doi.org/10.1093/jac/dkm332

    Article  CAS  PubMed  Google Scholar 

  11. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. https://doi.org/10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  12. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci 184:5449–5453. https://doi.org/10.1073/pnas.84.15.5449

    Article  Google Scholar 

  13. Imura Y, Choda N, Matsuzaki K (2008) Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 95:5757–5765. https://doi.org/10.1529/biophysj.108.133488

    Article  PubMed  PubMed Central  Google Scholar 

  14. Giacometti A, Cirioni O, Barchiesi F et al (2000) In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically. Antimicrob Agents Chemother 44:1694–1696. https://doi.org/10.1128/aac.44.6.1694-1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ge Y, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M (1999) In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 43:782–788. https://doi.org/10.1128/AAC.43.4.782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788:1680–1686. https://doi.org/10.1016/j.bbamem.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  17. Denardi LB, Weiblen C, Ianiski LB, Stibbe PC, Santurio JM (2021) Activity of MSI-78, h-Lf1-11 and cecropin B antimicrobial peptides alone and in combination with voriconazole and amphotericin B against clinical isolates of Fusarium solani. J Mycol Med 31:101–119. https://doi.org/10.1016/j.mycmed.2021.101119

    Article  Google Scholar 

  18. Zhang X, Oglecka K, Sandgren S, Belting M, Esbjörner EK (2010) Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. Biochim Biophys Acta 1798:2201–2208. https://doi.org/10.1016/j.bbamem.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  19. Hoyer J, Schatzschneider U, Schulz-Siegmund M, Neundorf I (2012) Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery. Beilstein J Org Chem 8:1788–1797. https://doi.org/10.3762/bjoc.8.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang J, Dietz MJ, Li B (2019) Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS ONE 14:e0216676. https://doi.org/10.1371/journal.pone.0216676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leszczynska K, Namiot D, Byfield FJ et al (2013) Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J Antimicrob Chemother 68:610–618. https://doi.org/10.1093/jac/dks434

    Article  CAS  PubMed  Google Scholar 

  22. Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT (2017) The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candida albicans, Staphylococcus aureus, and Escherichia coli, in vitro. Front Microbiol 8:544. https://doi.org/10.3389/fmicb.2017.00544

    Article  PubMed  PubMed Central  Google Scholar 

  23. Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013) The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 49:131–137. https://doi.org/10.1016/j.peptides.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  24. Hell E, Giske C, Nelson A, Römling U, Marchini G (2010) Human cathelicidin peptide LL-37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 50(2):211–5. https://doi.org/10.1111/j.1472-765X.2009.02778.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Denardi LB would like to thank the post-Doctoral fellowship provided by CNPq (PDJ -150752//2018-0).

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq; process no. 406170/2018–5). Conselho Nacional de Desenvolvimento Científico e Tecnológico,406170/2018–5,Janio Santurio

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janio M. Santurio.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denardi, L.B., Weiblen, C., Ianiski, L.B. et al. Anti-Pythium insidiosum activity of MSI-78, LL-37, and magainin-2 antimicrobial peptides. Braz J Microbiol 53, 509–512 (2022). https://doi.org/10.1007/s42770-022-00678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00678-5

Keywords

Navigation