Skip to main content
Log in

A recombinase polymerase amplification lateral flow assay for rapid detection of Burkholderia pseudomallei, the causative agent of melioidosis

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Burkholderia pseudomallei causes a fatal and infectious disease, melioidosis or Whitmore’s disease in humans and animals. Melioidosis is present in different parts of the world and is endemic in Southeast Asia and Northern Australia. Accurate diagnosis of melioidosis is difficult due to its common flu-like symptoms, potentially long incubation period and erroneous identification as culture contaminant. Early diagnosis of the disease is essentially required for administration of suitable antibiotics and disease containment. The present study reports a rapid, specific and sensitive recombinase polymerase amplification lateral flow assay for detection of B. pseudomallei. Specific primers and probe were designed and the assay was performed at 41 °C for 20 min in a portable incubator. End products were detected using ready-to-use lateral flow strips. RPA lateral flow assay could detect ≥ 250 fg genomic DNA of B. pseudomallei and ≥ 50 copies of recombinant plasmid harbouring the target DNA sequence. The assay was found to be highly specific and did not cross-react with other bacterial strains. In artificially spiked human blood and urine samples, the detection limit of the assay was 4.8 × 104 and 4.95 × 104 CFU/mL of B. pseudomallei, respectively. The detection limit of assay after 6 h of enrichment of artificially spiked urine samples was found to be 4.95 × 103 CFU/mL of B. pseudomallei. Detection limit in artificially spiked tap water and soil samples was determined to be 7.5 × 102 CFU/mL and 3.3 × 104 CFU per 5 g of B. pseudomallei, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36(12):1251–1275. https://doi.org/10.1111/j.1348-0421.1992.tb02129.x

    Article  CAS  PubMed  Google Scholar 

  2. Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41(5):2068–2079

    Article  CAS  Google Scholar 

  3. Wuthiekanun V, Smith MD, Dance DA, White NJ (1995) Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans R Soc Trop Med Hyg 89(1):41–43. https://doi.org/10.1016/0035-9203(95)90651-7

    Article  CAS  PubMed  Google Scholar 

  4. Currie BJ, Dance DA, Cheng AC (2008) The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 102(Suppl 1):S1-4. https://doi.org/10.1016/S0035-9203(08)70002-6

    Article  PubMed  Google Scholar 

  5. Goshorn RK (1987) Recrudescent pulmonary melioidosis. A case report involving the so-called ‘Vietnamese time bomb.’ Indiana Med J Indiana Med Ass 80(3):247–249

    CAS  Google Scholar 

  6. Cheng AC, Currie BJ (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18(2):383–416. https://doi.org/10.1128/CMR.18.2.383-416.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. White NJ (2003) Melioidosis. Lancet 361(9370):1715–1722. https://doi.org/10.1016/s0140-6736(03)13374-0

    Article  CAS  PubMed  Google Scholar 

  8. Peacock SJ, Schweizer HP, Dance DA, Smith TL, Gee JE, Wuthiekanun V, DeShazer D, Steinmetz I, Tan P, Currie BJ (2008) Management of accidental laboratory exposure to Burkholderia pseudomallei and B. mallei. Emerg Infect Dis 14(7):e2. https://doi.org/10.3201/eid1407.071501

    Article  PubMed  PubMed Central  Google Scholar 

  9. Glass MB, Popovic T (2005) Preliminary evaluation of the API 20NE and RapID NF plus systems for rapid identification of Burkholderia pseudomallei and B. mallei. J Clin Microbiol 43(1):479–483. https://doi.org/10.1128/JCM.43.1.479-483.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Brien M, Freeman K, Lum G, Cheng AC, Jacups SP, Currie BJ (2004) Further evaluation of a rapid diagnostic test for melioidosis in an area of endemicity. J Clin Microbiol 42(5):2239–2240. https://doi.org/10.1128/jcm.42.5.2239-2240.2004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wagner GE, Foderl-Hobenreich E, Assig K, Lipp M, Berner A, Kohler C, Lichtenegger S, Stiehler J, Karoonboonyanan W, Thanapattarapairoj N, Promkong C, Koosakulnirand S, Chaichana P, Ehricht R, Gad AM, Soffing HH, Dunachie SJ, Chantratita N, Steinmetz I (2020) Melioidosis DS rapid test: a standardized serological dipstick assay with increased sensitivity and reliability due to multiplex detection. PLoS Negl Trop Dis 14(7):e0008452. https://doi.org/10.1371/journal.pntd.0008452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lau SK, Sridhar S, Ho CC, Chow WN, Lee KC, Lam CW, Yuen KY, Woo PC (2015) Laboratory diagnosis of melioidosis: past, present and future. Exp Biol Med (Maywood) 240(6):742–751. https://doi.org/10.1177/1535370215583801

    Article  CAS  Google Scholar 

  13. Novak RT, Glass MB, Gee JE, Gal D, Mayo MJ, Currie BJ, Wilkins PP (2006) Development and evaluation of a real-time PCR assay targeting the type III secretion system of Burkholderia pseudomallei. J Clin Microbiol 44(1):85–90. https://doi.org/10.1128/JCM.44.1.85-90.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohd Ali MR, Foo PC, Hassan M, Maning N, Hussin A, Syed Ahmad Yunus SZ, Fauzi MH, MuhdBesar A, Harun A, Ismail N, Chan YY (2019) Development and validation of TaqMan real-time PCR for the detection of Burkholderia pseudomallei isolates from Malaysia. Trop Biomed 36(2):379–389

    CAS  PubMed  Google Scholar 

  15. Van Belkum A, Niesters HG (1995) Nucleic acid amplification and related techniques in microbiological diagnostics and epidemiology. Cell Mol Biol 41(5):615–623

    PubMed  Google Scholar 

  16. Lowe W, March JK, Bunnell AJ, O’Neill KL, RA R (2014) PCR-based methodologies used to detect and differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis. Curr Issues Mol Biol 16:23–54

    PubMed  Google Scholar 

  17. Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29(5):240–250. https://doi.org/10.1016/j.tibtech.2011.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glokler J, Lim TS, Ida J, Frohme M (2021) Isothermal amplifications - a comprehensive review on current methods. Crit Rev Biochem Mol Biol 15:1–44. https://doi.org/10.1080/10409238.2021.1937927

    Article  CAS  Google Scholar 

  19. Chen G, Chen R, Ding S, Li M, Wang J, Zou J, Du F, Dong J, Cui X, Huang X, Deng Y, Tang Z (2020) Recombinase assisted loop-mediated isothermal DNA amplification. Analyst 145:440–444. https://doi.org/10.1039/c9an01701a

    Article  CAS  PubMed  Google Scholar 

  20. Chantratita N, Meumann E, Thanwisai A, Limmathurotsakul D, Wuthiekanun V, Wannapasni S, Tumapa S, Day NP, Peacock SJ (2008) Loop-mediated isothermal amplification method targeting the TTS1 gene cluster for detection of Burkholderia pseudomallei and diagnosis of melioidosis. J Clin Microbiol 46(2):568–573. https://doi.org/10.1128/JCM.01817-07

    Article  CAS  PubMed  Google Scholar 

  21. Chua KH, Tan EW, Chai HC, Puthucheary SD, Lee PC, Puah SM (2020) Rapid identification of melioidosis agent by an insulated isothermal PCR on a field deployable device. Peer J 8:e9238. https://doi.org/10.7717/peerj.9238

    Article  PubMed  PubMed Central  Google Scholar 

  22. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204. https://doi.org/10.1371/journal.pbio.0040204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng Y, Zheng X, Kan B, Li W, Zhang W, Jiang T, Jinxing L, Aiping Q (2019) Rapid detection ofBurkholderia pseudomallei with a lateral flowrecombinase polymerase amplification assay. PLoS ONE 14(7):e0213416. https://doi.org/10.1371/journal.pone.0213416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kingsley VP, Arunkumar G, Tipre M, Leader M, Sathiakumar N (2016) Pitfalls and optimal approaches to diagnose melioidosis. Asian Pacific J Trop Med 9(6):515–524. https://doi.org/10.1016/j.apjtm.2016.04.003

    Article  Google Scholar 

  25. Mukhopadhyay C, Shaw T, Varghese GM, Dance DAB (2018) Melioidosis in South Asia (India, Nepal, Pakistan, Bhutan and Afghanistan). Trop Med Infect Dis 3(2):51. https://doi.org/10.3390/tropicalmed3020051

    Article  PubMed Central  Google Scholar 

  26. Yatsomboon A, Sermswan RW, Wongratanacheewin S (2018) Development of an immunomagnetic separation-ELISA for the detection of Burkholderia pseudomallei in blood samples. Asian Pac J Allergy Immunol. https://doi.org/10.12932/AP-080518-0307

    Article  Google Scholar 

  27. Shaw T, Tellapragada C, Ke V, AuCoin DP, Mukhopadhyay C (2018) Performance evaluation of Active Melioidosis Detect-Lateral Flow Assay (AMD-LFA) for diagnosis of melioidosis in endemic settings with limited resources. PLoS ONE 13(3):e0194595. https://doi.org/10.1371/journal.pone.0194595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rizzi MC, Rattanavong S, Bouthasavong L, Seubsanith A, Vongsouvath M, Davong V, De Silvestri A, Manciulli T, Newton PN, Dance DAB (2019) Evaluation of the Active Melioidosis Detect™ test as a point-of-care tool for the early diagnosis of melioidosis: a comparison with culture in Laos. Trans R Soc Trop Med Hyg 113:757–763. https://doi.org/10.1093/trstmh/trz092

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saxena A, Pal V, Tripathi NK, Goel AK (2019) Development of a rapid and sensitive recombinase polymerase amplification-lateral flow assay for detection of Burkholderia mallei. Transbound Emerg Dis 66(2):1016–1022. https://doi.org/10.1111/tbed.13126

    Article  CAS  PubMed  Google Scholar 

  30. Walsh AL, Smith MD, Wuthiekanun V, Suputtamongkol Y, Chaowagul W, Dance DA, Angus B, White NJ (1995) Prognostic significance of quantitative bacteremia in septicemic melioidosis. Clin Infect Dis 21(6):1498–1500. https://doi.org/10.1093/clinids/21.6.1498

    Article  CAS  PubMed  Google Scholar 

  31. Limmathurotsakul D, Wuthiekanun V, Chierakul W, Cheng AC, Maharjan B, Chaowagul W, White NJ, Day NP, Peacock SJ (2005) Role and significance of quantitative urine cultures in diagnosis of melioidosis. J Clin Microbiol 43(5):2274–2276. https://doi.org/10.1128/JCM.43.5.2274-2276.2005

    Article  PubMed  PubMed Central  Google Scholar 

  32. Limmathurotsakul D, Dance DA, Wuthiekanun V, Kaestli M, Mayo M, Warner J, Wagner DM, Tuanyok A, Wertheim H, Yoke Cheng T, Mukhopadhyay C, Puthucheary S, Day NP, Steinmetz I, Currie BJ, Peacock SJ (2013) Systematic review and consensus guidelines for environmental sampling of Burkholderia pseudomallei. PLoS Negl Trop Dis 7(3):e2105. https://doi.org/10.1371/journal.pntd.0002105

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vesaratchavest M, Tumapa S, Day NP, Wuthiekanun V, Chierakul W, Holden MT, White NJ, Currie BJ, Spratt BG, Feil EJ, Peacock SJ (2006) Nonrandom distribution of Burkholderia pseudomallei clones in relation to geographical location and virulence. J Clin Microbiol 44(7):2553–2557. https://doi.org/10.1128/JCM.00629-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jauset-Rubio M, Tomaso H, El-Shahawi MS, Bashammakh AS, Al-Youbi AO, O’Sullivan CK (2018) Duplex lateral flow assay for the simultaneous detection of Yersinia pestis and Francisella tularensis. Anal Chem 90(21):12745–12751. https://doi.org/10.1021/acs.analchem.8b03105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Director, DRDE, Gwalior, for providing necessary research facilities and encouragement (DRDE/BPT/01/2021). AS is thankful to DRDO for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijai Pal.

Ethics declarations

Ethics approval

The experiments were performed according to the Institutional Animal Ethics Committee (IAEC) guidelines vide registration number 37/1999/CPCSEA and approved by Institutional Biosafety Committee vide protocol number IBSC/19/BPD/VP/2.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Pal, V., Tripathi, N. et al. A recombinase polymerase amplification lateral flow assay for rapid detection of Burkholderia pseudomallei, the causative agent of melioidosis. Braz J Microbiol 53, 185–193 (2022). https://doi.org/10.1007/s42770-021-00669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00669-y

Keywords

Navigation