Skip to main content
Log in

Molecular analysis of Aspergillus section Nigri isolated from onion samples reveals the prevalence of A. welwitschiae

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate Aspergillus section Nigri from onion samples bought in supermarkets and to analyze the fungal isolates by means of molecular data in order to differentiate A. niger and A. welwitschiae species from the other non-toxigenic species of black aspergilli, and detect genes involved in the biosynthesis of ochratoxin A and fumonisin B2. Aspergillus section Nigri were found in 98% (94/96) of the onion samples. Based on the results of multiplex PCR (performed on 500 randomly selected strains), 97.4% of the Aspergillus section Nigri strains were recognized as A. niger/A. welwitschiae. Around half of them were subjected to partial sequencing of the CaM gene to distinguish one from the other. A total of 97.9% of the isolates were identified as A. welwitschiae and only 2.1% as A. niger. The fum8 gene, involved in fumonisin B2 biosynthesis, was found in 36% of A. welwitschiae isolates, but radH and pks genes, involved in ochratoxin A biosynthesis, were found in only 2.8%. The presence/absence of fum8 gene in the A. welwitschiae genome is closely associated with ability/inability of the isolates to produce fumonisin in vitro. Based on these results, we suggest that in-depth studies are conducted to investigate the presence of fumonisins in onion bulbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fungaro MHP, Ferranti LS, Massi FP, da Silva JJ, Sartori D, Taniwaki MH, Frisvad JC, Iamanaka BT (2017) Aspergillus labruscus sp. nov., a new species of Aspergillus section Nigri discovered in Brazil. Sci Rep 7:6203. https://doi.org/10.1038/s41598-017-06589-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW, Perrones G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsube S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173. https://doi.org/10.1016/j.simyco.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA (2011) Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol 115:1138–1150. https://doi.org/10.1016/j.funbio.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  4. Abarca ML, Bragulat MR, Castellá G, Cabañes FJ (1994) Ochratoxin A production by strains of Aspergillus niger var. niger. Appl Environ Microbiol 60:2650–2652. https://doi.org/10.1128/AEM.60.7.2650-2652.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frisvad JJ, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55:9727–9732. https://doi.org/10.1021/jf0718906

    Article  CAS  PubMed  Google Scholar 

  6. Hong SB, Lee M, Kim DH, Varga J, Frisvad JC, Perrone G, Gomi K, Yamada O, Machida M, Houbraken J, Samson RA (2013) Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS One 8:1–97. https://doi.org/10.1371/journal.pone.0063769

    Article  CAS  Google Scholar 

  7. Voss KA, Riley RT (2013) Fumonisin toxicity and mechanism of action: overview and current perspectives. Food Safety 1:2013006. https://doi.org/10.14252/foodsafetyfscj.2013006

    Article  Google Scholar 

  8. Malir F, Ostry V, Pfohl-Leszkowicz A, Malir J, Toman J (2016) Ochratoxin A: 50 years of research. Toxins 8:12–15. https://doi.org/10.3390/toxins8070191

    Article  CAS  Google Scholar 

  9. Massi FP, Sartori D, Ferranti LS, Iamanaka BT, Taniwaki MH, Vieira MLC, Fungaro MHP (2016) Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae. Int J Food Microbiol 221:19–28. https://doi.org/10.1016/j.ijfoodmicro.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu K, Nakagawa H, Hashimoto R, Hagiwara D, Onji Y, Asano K, Kawamoto S, Takahashi H, Yokoyama K (2015) The a-oxoamine synthase gene fum8 is involved in fumonisin B2 biosynthesis in Aspergillus niger. Mycoscience 56:1–8. https://doi.org/10.1016/j.myc.2014.09.001

    Article  CAS  Google Scholar 

  11. Zhang H, Apaliya MT, Mahunu GK, Chen L, Li W (2016) Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: a review. Trends Food Sci Technol 51:88–97. https://doi.org/10.1016/j.tifs.2016.03.012

    Article  CAS  Google Scholar 

  12. Walker JC (1924) Further studies on relation of onion scale pigmentation to disease resistance. J Agric Res XXIX:507–514

    Google Scholar 

  13. Varga J, Kocsubé S, Szigeti G, Man V, Tóth B, Vágvölgyi C, Bartók T (2012) Black aspergilli and fumonisin contamination in onions purchased in Hungary. Acta Aliment 41:414–423. https://doi.org/10.1556/AAlim.41.2012.4.3

    Article  CAS  Google Scholar 

  14. Gherbawy Y, Elhariry H, Kocsubé S, Bahobial A, El Deeb B, Altalhi A, Varga J, Vágvölgyi C (2015) Molecular characterization of black Aspergillus species from onion and their potential for ochratoxin A and fumonisin B2 production. Foodborne Pathog Dis 12(5):414–413. https://doi.org/10.1089/fpd.2014.1870

    Article  CAS  PubMed  Google Scholar 

  15. Pitt JI, Hocking AD (2009) Fungi and food spoilage, Second edn. Black Academic & Professional - Chapman & Hall, London, 593p. https://doi.org/10.1007/978-0-387-92207-2

  16. Hocking AD, Pitt JI (1980) Dichloran-glycerol medium for enumeration of xerophilic fungi from low moisture foods. Appl Environ Microbiol 39:488–492. https://doi.org/10.1128/AEM.39.3.488-492.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371. https://doi.org/10.1016/j.simyco.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Buffon AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–148. https://doi.org/10.1016/S0065-2660(08)60408-3

    Article  CAS  PubMed  Google Scholar 

  19. Hong SB, Cho HS, Shin HD (2006) Novel Neosartorya species isolated from soil in Korea. Int J Syst Evol Microbiol 56:477–486. https://doi.org/10.1099/ijs.0.63980-0

    Article  CAS  PubMed  Google Scholar 

  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferranti LS, Fungaro MHP, Massi FP, Silva JJ, Penha RES, Frisvad JC, Taniwaki MH, Iamanaka BT (2018) Diversity of Aspergillus section Nigri on the surface of Vitis labrusca and its hybrid grapes. Int J Food Microbiol 268:53–60. https://doi.org/10.1016/j.ijfoodmicro.2017.12.027

    Article  CAS  PubMed  Google Scholar 

  23. Sang MK, Han GD, Oh JY, Chun SC, Kim KD (2014) Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea. Crop Prot 65:138–142. https://doi.org/10.1016/j.cropro.2014.07.016

    Article  Google Scholar 

  24. Ara MAM, Khatun ML, Ashrafuzzaman M (2008) Fungi causing rots in onions at storage and market. J Bangladesh Agril Univ 6:245–251. https://doi.org/10.3329/jbau.v6i2.4818

    Article  Google Scholar 

  25. Samuel O, Ifeanyi O (2015) Fungi associated with the deterioration of post-harvest onion bulbs sold in some markets in Awka, Nigeria. J Biosci Bioeng 3:90–94. https://doi.org/10.13189/bb.2015.030503

    Article  Google Scholar 

  26. Shehu K, Muhammad S (2012) Fungi associated with storage rots of onion bulbs in Sokoto, Nigeria. Int J Mod 1:1–3. https://doi.org/10.5923/j.ijmb.20110101.01

    Article  Google Scholar 

  27. Susca A, Proctor RH, Morelli M, Haidukowski M, Gallo A, Logrieco AF, Moretti A (2016) Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins. Front Microbiol 7:1–16. https://doi.org/10.3389/fmicb.2016.01412

    Article  Google Scholar 

  28. Susca A, Proctor RH, Mulè G, Stea G, Ritieni A, Logrieco A, Moretti A (2010) Correlation of mycotoxin fumonisin B2 production and presence of the fumonisin biosynthetic gene fum8 in Aspergillus niger from grape. J Agric Food Chem 58:9266–9272. https://doi.org/10.1021/jf101591x

    Article  CAS  PubMed  Google Scholar 

  29. Susca A, Proctor RH, Butchko RAE, Haidukowski M, Stea G, Logrieco A, Moretti A (2014) Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli. Fungal Genet Biol 73:39–52. https://doi.org/10.1016/j.fgb.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  30. Olarte RA, Menke J, Zhang Y, Sullivan S, Slot JC, Huang Y, Badalamenti JP, Quandt AC, Sparafora JW, Bushley KE (2019) Chromosome rearrangements shape the diversification of secondary metabolism in the cyclosporin producing fungus Tolypocladium inflatum. BMC Genomics 20:120. https://doi.org/10.1186/s12864-018-5399-x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Turner G (2010) Genomics and secondary metabolism in Aspergillus. In: Machida M, Gomi K (eds) Aspergillus: molecular biology and genomics. Caister Academic Press, Norfolk, pp 139–155

    Google Scholar 

  32. Ferracin LM, Fier CB, Vieira MLC, Monteiro-Vitorello CB, Varani A de M, Rossi MM, Muller-Santos M, Taniwaki MH, Iamanaka BT, MHP F (2012) Strain-specific polyketide synthase genes of Aspergillus niger. Int J Food Microbiol 155:137–145. https://doi.org/10.1016/j.ijfoodmicro.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  33. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231. https://doi.org/10.1038/nbt1282

    Article  PubMed  Google Scholar 

  34. Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, Nielsen KF (2011) Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6:2–7. https://doi.org/10.1371/journal.pone.0023496

    Article  CAS  Google Scholar 

  35. Castellá G, Cabanes FJ (2011) Development of a real time PCR system for detection of ochratoxin A-producing strains of the Aspergillus niger aggregate. Food Control 22:1367–1372. https://doi.org/10.1016/j.foodcont.2011.02.014

    Article  CAS  Google Scholar 

  36. Yamada O, Machida M, Hosoyama A, Goto M, Takahashi T, Futagami T, Yamagata Y, Takeuchi M, Kobayashi T, Koike H, Abe K, Asai K, Arita M, Fujita N, Fukuda K, Higa K, Horikawa H, Ishikawa T, Jinno K, Kato Y, Kirimura K, Mizutani O, Nakasone K, Sano M, Shiraishi Y, Tsukahara M, Gomi K (2016) Genome sequence of Aspergillus luchuensis NBRC 4314. DNA Res 23(6):507–515. https://doi.org/10.1093/dnares/dsw032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Project 2013/05414-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (F.M. Pelisson, grant Code 001), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) (M. H. P. Fungaro, grant #310970/2015-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Helena Pelegrinelli Fungaro.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Rosana Puccia.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Aspergillus welwitschiae is very frequently found in onions marketed in Brazil.

• An essential gene involved in fumonisin biosynthesis (fum8) is present in 36% of Aspergillus welwitschiae strains.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massi, F.P., Iamanaka, B.T., Barbosa, R.L. et al. Molecular analysis of Aspergillus section Nigri isolated from onion samples reveals the prevalence of A. welwitschiae. Braz J Microbiol 52, 387–392 (2021). https://doi.org/10.1007/s42770-020-00390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00390-2

Keywords

Navigation