Skip to main content
Log in

Structural variability and niche differentiation of the rhizosphere and endosphere fungal microbiome of Casuarina equisetifolia at different ages

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Background

Casuarina equisetifolia is one of the most important artificially planted protective forests along the coast in southern China for windbreaks, soil erosion, and sand dune stabilization. Self-renewing of C. equisetifolia is very limited, which might be caused by low soil nutrient levels and reduced microbial activity.

Methods

Use of high-throughput sequencing of the 18S rDNA to investigate the microbial communities from the rhizosphere and root endosphere of C. equisetifolia in young-aged, intermediate-aged, and mature-aged forests.

Results

Our results indicate that the diversity of rhizosphere fungal microbiomes in field-grown C. equisetifolia is much lower than that of the endosphere microbiomes. Bioinformatic analysis showed that rhizocompartments produce the strongest differentiation of rhizosphere and endosphere communities. Notably, the distribution of rhizosphere fungi communities was significantly influenced by the environmental factors, not by forest ages.

Conclusions

The presented study suggests that the rhizocompartments and environmental factors, rather than forest ages, determine the diversities of fungal community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  2. Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165. https://doi.org/10.3389/fpls.2013.00165

    Article  PubMed  PubMed Central  Google Scholar 

  3. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209. https://doi.org/10.1186/gb-2013-14-6-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359. https://doi.org/10.1038/ismej.2015.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  6. Mendes R, Kruijt M, Ide B, Dekkers E et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. https://doi.org/10.1126/science.1203980

    Article  CAS  Google Scholar 

  7. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low nutrient environments. Plant Soil 245:35–47. https://doi.org/10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  8. Raaijmakers JM, Paulitz TC, Steinberg C (2009) Alabouvette, C., Moënne-Loccoz, Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 321:341–361. https://doi.org/10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  9. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  10. Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:6548–6553. https://doi.org/10.1073/pnas.1302837110

    Article  PubMed  Google Scholar 

  11. Xiao X, Chen WM, Zong L, Yang J, Jiao S, Lin YB, Wang ET, Wei GH.(2016)Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 26(6). https://doi.org/10.1111/mec.14027

  12. Chen XY, Lin P (2002) Mating system and inbreeding retrogression of Casuarina equisetifolia plantation, an introduced species in Xiamen. J Appl Ecol 13:1377–1380. https://doi.org/10.13287/j.1001-9332.2002.0317

    Article  Google Scholar 

  13. Zhu R (2005) Summarize on woodland soil principal genes of influencing Casuarina equisetifolia protection forest growth. Sci Technol Qinghai Agric For 4:23–24

    Google Scholar 

  14. Liu KX, Hao QY, Zhong QX (2009) Investigation and comparative analysis on coastal shelterbelt of Wenchang and Wanning in Hainan province. Prot For. Sci Technol 27:12–15. https://doi.org/10.13601/j.issn.1005-5215.2009.05.033

    Article  Google Scholar 

  15. Yang ZY, Xue Y, Liu XZ, Wang XY, Lin ZP (2014) Additivity in tree biomass models of Casuarina equisetifolia in Hainan province. J Northeast Fore Univ 43:36–40. https://doi.org/10.13759/j.cnki.dlxb.20141226.027

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhong CL, Chen Y, Chen Z (2006) The advance of casuarina symbiotic microbe research. Guangdong For Sci Technol 22:70–74. https://doi.org/10.3969/j.issn.1006-4427.2006.01.018

    Article  CAS  Google Scholar 

  17. Lin YQ, Wu CZ, Xie AQ, Lin H, Li J, Hong T, Hong W (2015) Isolation of endophytic fungi from Casuarina equisetifolia and screening of promoting strains. J BeiHua Univ 16:522–528. https://doi.org/10.11713/j.issn.1009-4822.2015.04.027

    Article  Google Scholar 

  18. Wang X, Li HM, Cao TT, Gu MZ, Chen Y, Feng L, Li L (2017) The diversity of soil fungi and allelopathic potentials of special fungal metabolites in Casuarina equisetifolia woodlands of different stand ages. Chin J Appl Environ Biol 23:670–677. https://doi.org/10.3724/SP.J.1145.2016.08023

    Article  Google Scholar 

  19. Huang R, Jin SK, Wang X, Xu ZX, Li HM, Li L (2018) Allelopathic potential of root endophytic fungal metabolites of Casuarina equisetifolia. Allelopathy J 45:213–228. https://doi.org/10.26651/allelo.j/2018-45-2-1188

    Article  Google Scholar 

  20. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Schadt W et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944. https://doi.org/10.1128/AEM.05255-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gang GH, Cho G, Kwak YS, Park EH (2017) Distribution of rhizosphere and endosphere fungi on the first-class endangered plant Cypripedium japonicum. Mycobiology 45:97–100. https://doi.org/10.5941/MYCO.2017.45.2.97

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rojas C, Gutierrez RM, Bruns MA (2016) Bacterial and eukaryal diversity in soils forming from acid mine drainage precipitates under reclaimed vegetation and biological crusts. Appl Soil Ecol 105:57–66. https://doi.org/10.1016/j.apsoil.2016.03.012

    Article  Google Scholar 

  23. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Update on root exudation and rhizosphere biology: root exudation and rhizosphere biology. Plant Physiol 2003(132):44–51. https://doi.org/10.1104/pp.102.019661

    Article  CAS  Google Scholar 

  24. Lugtenberg BJJ, Dekkers LC, Minireview (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13. https://doi.org/10.1046/j.1462-2920.1999.00005.x

    Article  CAS  PubMed  Google Scholar 

  25. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  26. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175. https://doi.org/10.1023/A:1024106605806

    Article  CAS  Google Scholar 

  27. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. https://doi.org/10.1177/0095244305054674

    Article  CAS  Google Scholar 

  28. Shakya M, Gottel N, Castro H, Yang ZK, Labbé J et al (2013) A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS One 8:e76382. https://doi.org/10.1371/journal.pone.0076382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:e02527–e02514. https://doi.org/10.1128/mBio.02527-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen F, Yang B, Ma J, Hou H, Zhang S (2016) Effects of CO2 geological storage leakage on soil microbial community. J China Univ Min Technol 45(1285–1293):1299. https://doi.org/10.13247/j.cnki.jcumt.000527

    Article  Google Scholar 

  31. Chen X, Wang F, Yan J, Liu Y, Tan H, Zhou Y (2016) Effect of coversoil thickness on diurnal variation characteristics of reclaimed soil respiration in coal mining areas. J China Univ Min Technol 45:164–169. https://doi.org/10.13247/j.cnki.jcumt.000462

    Article  Google Scholar 

  32. Mu SG, Dong JH, Hui W, Hua Z, Bian ZF (2007) Study of reclaimed soil respiration on the site by filling mining wastes and fly ash into subsidence area due to coal mining. J China Univ Min Technol 36:663–668 1000-1964(2007)05-0663-06

    CAS  Google Scholar 

  33. Bouchez T, Blieux AL, Dequiedt S, Domaizon I, Dufresne A, Ferreira S, Godon JJ, Hellal J, Joulian C, Quaiser A, Martin-Laurent F, Mauffret A, Monier JM, Peyret P, Schmitt-Koplin P, Sibourg O, D’oiron E, Bispo A, Deportes I, Grand C, Cuny P, Maron PA, Ranjard L (2016) Molecular microbiology methods for environmental diagnosis. Environ Chem Lett 14:423–441. https://doi.org/10.1007/s10311-016-0581-3

    Article  CAS  Google Scholar 

  34. Bachmann G, Kinzel H (1992) Physiological and ecological aspects of the interactions between plant-roots and rhizosphere soil. Soil Biol Biochem 24:543–552. https://doi.org/10.1016/0038-0717(92)90079-D

    Article  Google Scholar 

  35. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. https://doi.org/10.1007/s11104-008-9885-9

    Article  CAS  Google Scholar 

  36. Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27. https://doi.org/10.1016/j.foreco.2013.02.034

    Article  Google Scholar 

  37. Thoms C, Gleixner G (2013) Seasonal differences in tree species’ influence on soil microbial communities. Soil Biol Biochem 66:239–248. https://doi.org/10.1016/j.soilbio.2013.05.018

    Article  CAS  Google Scholar 

  38. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil ph as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. https://doi.org/10.1128/AEM.00335-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a ph gradient in an arable soil. ISME J. 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  40. Li XR, Bai LJ, Chen BL, Lan HK, Fu CD, Li L (2014) Analysis of soil physicochemical properties and biological activity of the Casuarina equisetifolia forests with different ages. J Northwest For Univ 29:37–41. https://doi.org/10.3969/j.issn.1001-7461

    Article  Google Scholar 

  41. Wang MY, Liu Q, Ding YF, Fu SZ, Ye ZL, Feng TS (2008) Nutrients and litter decomposition in Vatica mangachapoi forest versus Casuarina equisetifolia plantation. J Zhejiang For Coll 25:597–603

    Google Scholar 

  42. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci Soc Am J 66:1930–1946. https://doi.org/10.2136/sssaj2002.1930

    Article  CAS  Google Scholar 

  43. Tian Z, Wu XQ, Dai EF, Zhao DS (2016) SOC storage and potential of grasslands from 2000 to 2012 in central and eastern Inner Mongolia, China. J Arid Land 8:364–374. https://doi.org/10.1007/s40333-016-0041-8

    Article  Google Scholar 

  44. Carter MR (1986) Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res 7:29–40. https://doi.org/10.1016/0167-1987(86)90005-X

    Article  Google Scholar 

  45. Bastida F, Selevsek N, Torres IF, Hernández T, García C (2015) Soil restoration with organic amendments: linking cellular functionality and ecosystem processes. Sci Rep 5:15550. https://doi.org/10.1038/srep15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xiang Jin from the College of Life Sciences, Hainan Normal University, for the kind advices on processing the data and manuscript writing.

Funding

This research was funded by the Hainan Provincial Natural Science Foundation of China (2018CXTD337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Acacio Aparecido Navarrete.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Chen, P., Wang, X. et al. Structural variability and niche differentiation of the rhizosphere and endosphere fungal microbiome of Casuarina equisetifolia at different ages. Braz J Microbiol 51, 1873–1884 (2020). https://doi.org/10.1007/s42770-020-00337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00337-7

Keywords

Navigation