Skip to main content
Log in

Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Rhizobacteria emit bioactive metabolites with antifungal properties that could be used for biocontrol of fungal diseases. In this study, we evaluated the potential of diffusible and volatile organic compounds (VOCs) emitted by avocado rhizobacteria to inhibit the growth of Fusarium kuroshium, one of the causal agents of Fusarium dieback (FD) in avocado. Three bacterial isolates (INECOL-6004, INECOL-6005, and INECOL-6006), belonging to the Bacillus genus, were selected based on their capacity to inhibit several avocado fungal pathogens, and tested in antagonism assays against F. kuroshium. The three bacterial isolates significantly inhibited F. kuroshium mycelial growth by up to 48%. The composition of bacterial diffusible compounds was characterized by the analysis of EtOAc and n-BuOH extracts by using ultra-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (HRMS). The three bacterial isolates produced cyclo-lipopeptides belonging to the iturin, fengycin, and surfactin families. The antifungal activity of n-BuOH extracts was larger than that of EtOAc extracts, probably due to the greater relative abundance of fengycin in the former than in the latter. In addition, isolates INECOL-6004 and INECOL-6006 significantly inhibited F. kuroshium mycelial growth through VOC emission by up to 69.88%. The analysis of their VOC profiles by solid phase micro-extraction (SPME) coupled to gas chromatography and mass spectrometry (GC-MS) revealed the presence of ketones and pyrazine compounds, particularly of 2-nonanone, which was not detected in the VOC profile of isolate INECOL-6005. These results emphasize the need to further investigate the antifungal activity of each bioactive compound for the development of new formulations against fungal phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations (FAOSTAT) (2016) http://www.fao.org/faostat/en/#data/QC

  2. Toerien J (2007) The Phytophthora challenge. Calif Avocado Soc Yearbook 90:89–101

    Google Scholar 

  3. Guardado-Valdivia L, Tovar-Pérez E, Chacón-López A, López-García U, Gutiérrez-Martínez P, Stoll A, Aguilera S (2018) Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Microbiol Res 210:26–32. https://doi.org/10.1016/j.micres.2018.01.007

    Article  PubMed  Google Scholar 

  4. Eskalen A, Stouthamer R, Lynch SC, Rugman-Jones PF, Twizeyimana M, Gonzalez A, Thibault T (2013) Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Dis 97:938–951. https://doi.org/10.1094/PDIS-11-12-1026-RE

    Article  PubMed  Google Scholar 

  5. Carrillo D, Cruz LF, Kendra PE, Narvaez TI, Montgomery WS, Monterroso A, De Grave C, Cooperband MF (2016) Distribution, pest status and fungal associates of Euwallacea nr. fornicatus in Florida avocado groves. Insects 7:55. https://doi.org/10.3390/insects7040055

    Article  PubMed Central  Google Scholar 

  6. O’Donnell K, Libeskind-Hadas R, Hulcr J, Bateman C, Kasson MT, Ploetz RC, Konkol JL, Ploetz JN, Carrillo D, Campbell A, Duncan RE, Liyanage PNH, Eskalen A, Lynch SC, Geiser DM, Freeman S, Mendel Z, Sharon M, Aoki T, Cossé AA, Rooney AP (2016) Invasive Asian FusariumEuwallacea ambrosia beetle mutualists pose a serious threat to forests, urban landscapes and the avocado industry. Phytoparasitica 44:435–442. https://doi.org/10.1007/s12600-016-0543-0

    Article  Google Scholar 

  7. Freeman S, Sharon M, Maymon M, Mendel Z, Protasov A, Aoki T, Eskalen A, O’Donnell K (2013) Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia 105:1595–1606. https://doi.org/10.3852/13-066

    Article  CAS  PubMed  Google Scholar 

  8. van den Berg N, du Toit M, Morgan SW, Fourie G, de Beer ZW (2019) First report of Fusarium euwallaceae on Persea americana in South Africa. Plant Dis 103:1774. https://doi.org/10.1094/PDIS-10-18-1818-PDN

    Article  Google Scholar 

  9. Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404

    Google Scholar 

  10. Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, Hulcr J, Stouthamer R, Eskalen A (2016) Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329. https://doi.org/10.3852/15-063

    Article  PubMed  Google Scholar 

  11. Na F, Carrillo JD, Mayorquin JS, Ndinga-Muniania C, Stajich JE, Stouthamer R, Huang YT, Lin YT, Chen CY, Eskalen A (2018) Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Dis 102:1154–1164. https://doi.org/10.1094/PDIS-07-17-1042-RE

    Article  CAS  PubMed  Google Scholar 

  12. García-Ávila CDJ, Trujillo-Arriaga FJ, López-Buenfil JA, González-Gómez R, Carrillo D, Cruz LF, Ruiz-Galván I, Quezada-Salinas A, Acevedo-Reyes N (2016) First report of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Mexico. Fla Entomol 99:555–556. https://doi.org/10.1653/024.099.0335

    Article  Google Scholar 

  13. Lira-Noriega A, Soberón J, Equihua J (2018) Potential invasion of exotic ambrosia beetles Xyleborus glabratus and Euwallacea sp. in Mexico: a major threat for native and cultivated forest ecosystems. Sci Rep 8:10179. https://doi.org/10.1038/s41598-018-28517-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayorquin JS, Carrillo JD, Twizeyimana M, Peacock BB, Sugino KY, Na F, Wang DH, Kabashima JN, Eskalen A (2018) Chemical management of invasive shot hole borer and Fusarium dieback in California sycamore (Platanus racemosa) in southern California. Plant Dis 102:1307–1315. https://doi.org/10.1094/PDIS-10-17-1569-RE

    Article  CAS  PubMed  Google Scholar 

  15. Stout J, Huang SW, Calvin L, Lucier G, Perez A, Pollack S (2004) NAFTA trade in fruits and vegetables, in: Huang SW (Ed), Global trade patterns in fruits and vegetables, United States Department of Agriculture, Washington, D.C, pp. 39–51

  16. Umeda C, Eskalen A, Paine TD (2016) Polyphagous shot hole borer and Fusarium dieback in California. In: Paine T, Lieutier F (eds) Insects and diseases of Mediterranean forest systems. Springer International Publishing, New York, pp 757–767

    Chapter  Google Scholar 

  17. Dunlap CA, Lueschow S, Carrillo D, Rooney AP (2017) Screening of bacteria for antagonistic activity against phytopathogens of avocados. Plant Gene 11:17–22. https://doi.org/10.1016/j.plgene.2016.11.004

    Article  Google Scholar 

  18. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  19. Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. https://doi.org/10.1146/annurev.phyto.40.030402.110010

    Article  CAS  PubMed  Google Scholar 

  20. Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, Vicente AD, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959. https://doi.org/10.1111/j.1365-2672.2007.03433.x

    Article  CAS  PubMed  Google Scholar 

  21. Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81:821–830. https://doi.org/10.1128/AEM.02999-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patel P, Shah R, Joshi B, Ramar K, Natarajan A (2019) Molecular identification and biocontrol activity of sugarcane rhizosphere bacteria against red rot pathogen Colletotrichum falcatum. Biotechnol Rep 21:e00317. https://doi.org/10.1016/j.btre.2019.e00317

    Article  Google Scholar 

  23. Guevara-Avendaño E, Carrillo JD, Ndinga-Muniania C, Moreno K, Méndez-Bravo A, Guerrero-Analco JA, Eskalen A, Reverchon F (2018) Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie Van Leeuwenhoek 111:563–572. https://doi.org/10.1007/s10482-017-0977-5

    Article  CAS  PubMed  Google Scholar 

  24. Guevara-Avendaño E, Bejarano-Bolívar AA, Kiel-Martínez AL, Ramírez-Vázquez M, Méndez-Bravo A, Aguirre-von Wobeser E, Sánchez-Rangel D, Guerrero-Analco JA, Eskalen A, Reverchon F (2019) Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol Res 219:74–83. https://doi.org/10.1016/j.micres.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  25. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. https://doi.org/10.1007/s00253-009-2092-7

    Article  CAS  PubMed  Google Scholar 

  26. Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295. https://doi.org/10.1111/1751-7915.12238

    Article  CAS  PubMed  Google Scholar 

  27. Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D (2015) Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ Sci Pollut Res 22:18137–18147. https://doi.org/10.1007/s11356-015-5005-6

    Article  CAS  Google Scholar 

  28. Blacutt AA, Mitchell TR, Bacon CW, Gold SE (2016) Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticillioides. Mol Plant-Microbe Interact 29:713–723. https://doi.org/10.1094/MPMI-05-16-0093-R

    Article  CAS  PubMed  Google Scholar 

  29. Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78:5942–5944. https://doi.org/10.1128/AEM.01357-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, Ceballos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, Hernández-Cristóbal O, Guerrero-Analco JA, Reverchon F (2018) Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS One 13:e0194665. https://doi.org/10.1371/journal.pone.0194665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ceballos-Luna O (2019) Aislamiento y evaluación del potencial patógeno de hongos asociados con árboles de aguacate (Persea americana Mill.) en una huerta de Huatusco, Veracruz. B.Sc. Thesis, Facultad de Biología, Universidad Veracruzana, Mexico

  32. Reverchon F, García-Quiroz W, Guevara-Avendaño E, Solís-García IA, Ferrera-Rodríguez O, Lorea-Hernández F (2019) Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp. Braz J Microbiol 50:583–592. https://doi.org/10.1007/s42770-019-00094-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lavermicocca P, Iacobellis NS, Simmaco M, Graniti A (1999) Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol Mol Plant Pathol 50:129–140. https://doi.org/10.1006/pmpp.1996.0078

    Article  Google Scholar 

  34. Mousa WK, Schwan A, Davidson J, Strange P, Liu H, Zhou T, Auzanneau FI, Raizada MN (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Front Microbiol 6:1157. https://doi.org/10.3389/fmicb.2015.01157

    Article  PubMed  PubMed Central  Google Scholar 

  35. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  36. Liao J, Chen P, Yang Y, Kan S, Hsieh F, Liu Y (2016) Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules 21:1670. https://doi.org/10.3390/molecules21121670

    Article  CAS  PubMed Central  Google Scholar 

  37. Hall TA (1999) BioEdit: a friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  38. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manhas RK, Kaur T (2016) Biocontrol potential of Streptomyces hydrogenans strain DH16 toward Alternaria brassicicola to control damping off and black leaf spot of Raphanus sativus. Front Plant Sci 7:1869. https://doi.org/10.3389/fpls.2016.01869

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carmona-Hernandez S, Reyes-Pérez JJ, Chiquito-Contreras RG, Rincon-Enriquez G, Cerdan-Cabrera CR, Hernandez-Montiel LG (2019) Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9:121. https://doi.org/10.3390/agronomy9030121

    Article  CAS  Google Scholar 

  42. Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microb Biot 33:197. https://doi.org/10.1007/s11274-017-2364-9

    Article  CAS  Google Scholar 

  43. Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Sander ER, Kaplan D, Hirsch AM (2018) Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 9:2363. https://doi.org/10.3389/fmicb.2018.02363

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R (2012) Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L.caused by Fusarium solani. Biol Control 60:59–67. https://doi.org/10.1016/j.biocontrol.2011.10.002

    Article  Google Scholar 

  45. Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, Ruan Y, Shen Q (2013) Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of fusarium wilt of banana. Biol Fert Soils 49:435–446. https://doi.org/10.1007/s00374-012-0739-5

    Article  Google Scholar 

  46. Faheem M, Raza W, Zhong W, Nan Z, Shen Q, Xu Y (2015) Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biol Control 81:101–110. https://doi.org/10.1016/j.biocontrol.2014.11.012

    Article  Google Scholar 

  47. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  48. Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25:280–292

    Article  CAS  PubMed  Google Scholar 

  49. Fan B, Blom J, Klenk HP, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:22. https://doi.org/10.3389/fmicb.2017.00022

    Article  PubMed  PubMed Central  Google Scholar 

  50. Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10:302. https://doi.org/10.3389/fmicb.2019.00302

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dunlap CA (2019) Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biol Control 134:82–86. https://doi.org/10.1016/j.biocontrol.2019.04.011

    Article  Google Scholar 

  52. Torres MJ, Brandan CP, Sabaté DC, Petroselli G, Erra-Balsells R, Audisio MC (2017) Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biol Control 105:93–99. https://doi.org/10.1016/j.biocontrol.2016.12.001

    Article  CAS  Google Scholar 

  53. Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899. https://doi.org/10.1007/s00203-012-0823-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gong AD, Li HP, Yuan QS, Song XS, Yao W, He WJ, Zhang JB, Liao YC (2015) Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10:e0116871. https://doi.org/10.1371/journal.pone.0116871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu Y, Zhou J, Li C, Ma Y (2019) Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen 8:e813. https://doi.org/10.1002/mbo3.813

    Article  CAS  Google Scholar 

  56. Zheng M, Shi J, Shi J, Wang Q, Li Y (2013) Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biol Control 65:200–206. https://doi.org/10.1016/j.biocontrol.2013.02.004

    Article  CAS  Google Scholar 

  57. Raza W, Ling N, Yang L, Huang Q, Shen Q (2016) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856. https://doi.org/10.1038/srep24856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39. https://doi.org/10.1016/j.biocontrol.2016.11.007

    Article  Google Scholar 

  59. Boukaew S, Prasertsan P (2018) Inhibitory effects of acetophenone or phenylethyl alcohol as fumigant to protect soybean seeds against two aflatoxin-producing fungi. J Food Sci Technol 55:5123–5132. https://doi.org/10.1007/s13197-018-3458-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xing M, Zheng L, Deng Y, Xu D, Xi P, Li M, Kong G, Jiang Z (2018) Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen Peronophythora litchii. Molecules 23:358. https://doi.org/10.3390/molecules23020358

    Article  CAS  PubMed Central  Google Scholar 

  61. Giorgio A, De Stradis A, Lo Cantore P, Iacobellis N (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1056. https://doi.org/10.3389/fmicb.2015.01056

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the staff at CNRF-SENASICA, in particular Clemente García-Ávila and Abel López Buenfil, for providing the facilities to work with F. kuroshium. We thank Ana Karen Ávila for isolating the avocado rhizobacteria, Oscar Ceballos and Alfonso Méndez for isolating and identifying avocado fungal pathogens, and Hecady Castillejos and Freddy Tornero for their help with setting up the antagonism assays. We also thank Olinda E. Velázquez for her support with confocal microscopy images, Larissa Guillén for facilitating the use of the GC–MS, Alfonso Méndez for his help with image editing, and Ofelia Ferrera for her technical assistance. Finally, we are grateful to Carlos Nolasco for allowing us to access his avocado orchard.

Funding

This research was funded by SAGARPA-SENASICA through the agreement SENASICA-INECOL 2016 and by the National Fund for Scientific and Technological Development (Fondo Nacional de Desarrollo Científico y Tecnológico or FORDECyT) grant number 292399.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José A. Guerrero-Analco or Frédérique Reverchon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: Lucy Seldin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guevara-Avendaño, E., Bravo-Castillo, K.R., Monribot-Villanueva, J.L. et al. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium. Braz J Microbiol 51, 861–873 (2020). https://doi.org/10.1007/s42770-020-00249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00249-6

Keywords

Navigation