Skip to main content
Log in

Stretchable and Superhydrophilic Polyaniline/Halloysite Decorated Nanofiber Composite Evaporator for High Efficiency Seawater Desalination

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Here, authors report on composition of a stretchable, mechanically durable and superhydrophilic polyaniline (PANI)/halloysite nanotubes (HNTs) decorated PU nanofiber (PANI/HNTs@PU). The polymer nanofibers are placed as the core and PANI/HNTs makes the shell section. The PANI/HNTs creates a membrane with outstanding light absorption and photothermal conversion performance. The strong solar absorption capability and superhydrophilicity of the PANI/HNTs@PU remain almost unchanged during stretching, abrasion, and ultrasonic washing tests, exhibiting superior surface stability and durability. When the PANI/HNTs@PU is used for the interfacial evaporation, the evaporation rate and efficiency reach as high as 1.61 kg m− 2 h− 1 and 94.7%, respectively. No salt precipitation is observed on the solar absorber surface even under a high salinity or during the long term or cyclic evaporation test. Furthermore, the excellent interfacial evaporation function is maintained when the nanofiber composite is mechanically stretched. The PANI/HNTs@PU based evaporation device shows promising applications in high performance solar desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Richter BD, Bartak D, Caldwell P, Davis KF, Debaere P, Hoekstra AY, Li TS, Marston L, McManamay R, Mekonnen MM, Ruddell BL, Rushforth RR, Troy TJ. Water scarcity and fish imperilment driven by beef production. Nat Sustain 2020;3:319.

    Article  Google Scholar 

  2. Rosa L, Chiarelli DD, Rulli MC, Dell’Angelo J, D’Odorico P. Global agricultural economic water scarcity. Sci Adv 2020;6:eaaz6031.

    Article  Google Scholar 

  3. Cai JC, Guo F. Study of mass transfer coefficient in membrane desalination. Desalination 2017;407:46.

    Article  CAS  Google Scholar 

  4. Wu X, Chen GY, Owens G, Chu DW, Xu HL. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater Today Energy 2019;12:277.

    Article  Google Scholar 

  5. Feng SS, Low ZX, Liu SS, Zhang L, Zhang XW, Simon GP, Fang XY, Wang HT. Microporous polymer incorporated polyamide membrane for reverse osmosis desalination. J Membr Sci 2020;610:118299.

    Article  CAS  Google Scholar 

  6. Shi Q, Gao HQ, Zhang YD, Meng ZS, Rao DW, Su JY, Liu YZ, Wang YH, Lu RF. Bilayer graphene with ripples for reverse osmosis desalination. Carbon 2018;136:21.

    Article  CAS  Google Scholar 

  7. Zhao Q, Zhao DL, Nai MH, Chen SB, Chung TS. Nanovoid-enhanced thin-film composite reverse osmosis membranes using ZIF-67 nanoparticles as a sacrificial template. ACS Appl Mater Interfaces 2021;13:33024.

    Article  CAS  Google Scholar 

  8. Xu J, Zhang J, Fu B, Song C, Shang W, Tao P, Deng T. All-day freshwater harvesting through combined solar-driven interfacial desalination and passive radiative cooling. ACS Appl Mater Interfaces 2020;12:47612.

    Article  CAS  Google Scholar 

  9. Zhao LP, Du C, Zhou C, Sun SS, Jia YZ, Yuan JS, Song GM, Zhou X, Zhao Q, Yang SY. Structurally ordered AgNPs@C3N4/GO membranes toward solar-driven freshwater generation. ACS Sustain Chem Eng 2020;8:4362.

    Article  CAS  Google Scholar 

  10. Chen R, Wang X, Gan QM, Zhang TQ, Zhu KH, Ye MM. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection. J Mater Chem A 2019;7:11177.

    Article  CAS  Google Scholar 

  11. Xiao W, Yan J, Gao SJ, Huang XW, Luo JC, Wang L, Zhang S, Wu ZF, Lai XJ, Gao JF. Superhydrophobic MXene based fabric composite for high efficiency solar desalination. Desalination 2022;524:115475.

    Article  CAS  Google Scholar 

  12. Yan J, Xiao W, Chen LF, Wu ZF, Gao JF, Xue HG. Superhydrophilic carbon nanofiber membrane with a hierarchically macro/ meso porous structure for high performance solar steam generators. Desalination 2021;516:115224.

    Article  CAS  Google Scholar 

  13. Wu P, Wu X, Xu HL, Owens G. Interfacial solar evaporation driven lead removal from a contaminated soil. Ecomat 2021;3:e12140.

    Article  CAS  Google Scholar 

  14. Ni G, Zandavi SH, Javid SM, Boriskina SV, Cooper TA, Chen G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ Sci 2018;11:1510.

    Article  CAS  Google Scholar 

  15. Wu X, Wang YD, Wu P, Zhao JY, Lu Y, Yang XF, Xu HL. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv Funct Mater 2021;31:2102618.

    Article  CAS  Google Scholar 

  16. Zhu LL, Gao MM, Peh CKN, Ho GW. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy 2019;57:507.

    Article  CAS  Google Scholar 

  17. Liang PP, Liu SS, Ding YD, Wen XK, Wang K, Shao CL, Hong X, Liu YC. A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination. Chemosphere 2021;280:130719.

    Article  CAS  Google Scholar 

  18. Peng YB, Wang YJ, Li WW, Jin J. Bio-inspired vertically aligned polyaniline nanofiber layers enabling extremely high-efficiency solar membrane distillation for water purification. J Mater Chem A 2021;9:10678.

    Article  CAS  Google Scholar 

  19. Gao TT, Li YJ, Chen CJ, Yang Z, Kuang YD, Jia C, Song JW, Hitz EM, Liu BY, Huang H, Yu JY, Yang B, Hu LB. Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement. Small Methods 2019;3:1800176.

    Article  Google Scholar 

  20. Zhang YH, Li Q, Gao Q, Wan SY, Yao P, Zhu XS. Preparation of Ag/beta-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light. Appl Catal B 2020;267:118715.

    Article  CAS  Google Scholar 

  21. Yan J, Su Q, Xiao W, Wu ZF, Chen LF, Tang LC, Zheng N, Gao JF, Xue HG. A review of nanofiber membranes for solar interface evaporation. Desalination 2022;2:115686.

    Article  Google Scholar 

  22. Li L, Zang LL, Zhang SC, Dou TW, Han XN, Zhao DM, Zhang Y, Sun LG, Zhang YH. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination. J Taiwan Inst Chem Eng 2020;111:191.

    Article  CAS  Google Scholar 

  23. Wu H, Luo JC, Huang XW, Wang L, Guo Z, Liang J, Zhang S, Xue HG, Gao JF. Superhydrophobic, mechanically durable coatings for controllable light and magnetism driven actuators. J Colloid Interface Sci 2021;603:282.

    Article  CAS  Google Scholar 

  24. Li JY, Song X, Zhang WM, Xu HL, Guo T, Zhang XW, Gao JF, Pang H, Xue HG. Microporous carbon nanofibers derived from poly(acrylonitrile-co-acrylic acid) for high-performance supercapacitors. Chem Eur J 2020;26:3326.

    Article  CAS  Google Scholar 

  25. Schiffman JD, Blackford AC, Wegst UGK, Schauer CL. Carbon black immobilized in electrospun chitosan membranes. Carbohydr Polym 2011;84:1252.

    Article  CAS  Google Scholar 

  26. Huang A, Liu F, Cui ZX, Wang HK, Song XC, Geng LH, Wang HK, Peng XF. Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering. Compos Sci Technol 2021;214:108980.

    Article  CAS  Google Scholar 

  27. Eivazi Zadeh Z, Solouk A, Shafieian M, Haghbin NM. Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications. Mater Sci Eng C Mater Biol Appl 2021;118:111403.

    Article  CAS  Google Scholar 

  28. Qin Y, Shen H, Han L, Zhu ZM, Pan F, Yang SW, Yin XZ. Mechanically robust janus poly(lactic acid) hybrid fibrous membranes toward highly efficient switchable separation of surfactant-stabilized oil/water emulsions. ACS Appl Mater Interfaces 2020;12:50879.

    Article  CAS  Google Scholar 

  29. Jin Y, Chang J, Shi Y, Shi L, Hong S, Wang P. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation. J Mater Chem A 2018;6:7942.

    Article  CAS  Google Scholar 

  30. Wang H, Huang XW, Li W, Gao JF, Xue HG, Li RKY, Mai YW. TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes. Colloids Surf A Physicochem Eng Asp 2018;549:205.

    Article  CAS  Google Scholar 

  31. Mei LY, Song P, Liu YQ. Magnetic-field-assisted electrospinning highly aligned composite nanofibers containing well-aligned multiwalled carbon nanotubes. J Appl Polym Sci 2015;132:41995.

    Article  Google Scholar 

  32. Song YH, Sun ZY, Xu L, Shao ZB. Preparation and characterization of highly aligned carbon nanotubes/polyacrylonitrile composite nanofibers. Polymers (Basel) 2017;9:1.

    Article  CAS  Google Scholar 

  33. Zhao XY, Luo JJ, Fang CJ, Xiong J. Investigation of polylactide/poly(ε-caprolactone)/multi-walled carbon nanotubes electrospun nanofibers with surface texture. RSC Adv 2015;5:99179.

    Article  CAS  Google Scholar 

  34. He MT, Liu HJ, Wang LM, Qin XH, Yu JY. One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation dagger. Mater Chem Front 2021;5:3673.

    Article  CAS  Google Scholar 

  35. Zhang YX, Ravi SK, Tan SC. Systematic study of the effects of system geometry and ambient conditions on solar steam generation for evaporation optimization. Adv Sustain Syst 2019;3:1900044.

    Article  CAS  Google Scholar 

  36. Kou H, Liu ZX, Zhu B, Macharia DK, Ahmed S, Wu BH, Zhu MF, Liu XG, Chen ZG. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019;462:29.

    Article  CAS  Google Scholar 

  37. Zhang L, Wang T, Liu P. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization. Appl Surf Sci 2008;255:2091.

    Article  CAS  Google Scholar 

  38. Liu WJ, Yuan K, Ru QX, Zuo SX, Wang L, Yang S, Han J, Yao C. Functionalized halloysite template-assisted polyaniline synthesis high-efficiency iron/nitrogen-doped carbon nanotubes towards nonprecious ORR catalysts. Arab J Chem 2020;13:4954.

    Article  CAS  Google Scholar 

  39. Huang HB, Yao JL, Chen HY, Zeng XP, Chen CL, She X, Li L. Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance. J Mater Sci 2016;51:4047.

    Article  CAS  Google Scholar 

  40. Huang XW, Zhang S, Xiao W, Luo JC, Li B, Wang L, Xue HG, Gao JF. Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion. J Membr Sci 2020;614:118500.

    Article  CAS  Google Scholar 

  41. Huang XW, Li B, Song X, Wang L, Shi Y, Hu MJ, Gao JF, Xue HG. Stretchable, electrically conductive and superhydrophobic/superoleophilic nanofibrous membrane with a hierarchical structure for efficient oil/water separation. J Ind Eng Chem 2019;70:243.

    Article  CAS  Google Scholar 

  42. Huo LY, Luo JC, Huang XW, Zhang S, Gao SJ, Long B, Gao JF. Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation. Colloids Surf A Physicochem Eng Asp 2020;603:125224.

    Article  CAS  Google Scholar 

  43. Xiao W, Wang L, Li B, Li YY, Wang YQ, Luo JC, Huang XW, Xie A, Gao JF. Interface-engineered reduced graphene oxide assembly on nanofiber surface for high performance strain and temperature sensing. J Colloid Interface Sci 2022;608:931.

    Article  CAS  Google Scholar 

  44. Zhang XL, Qin ZY, Liu X, Liang BL, Liu N, Zhou Z, Zhu MF. Flexible sensing fibers based on polyaniline-coated polyurethane for chloroform vapor detection. J Mater Chem A 2013;1:10327.

    Article  CAS  Google Scholar 

  45. Gao MM, Zhu LL, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci 2019;12:841.

    Article  CAS  Google Scholar 

  46. Tahir Z, Kim S, Ullah F, Lee S, Lee JH, Park NW, Seong MJ, Lee SK, Ju TS, Park S, Bae JS, Jang JI, Kim YS. Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides. ACS Appl Mater Interfaces 2020;12:2490.

    Article  CAS  Google Scholar 

  47. Gao X, Ren HY, Zhou JY, Du R, Yin C, Liu R, Peng HL, Tong LM, Liu ZF, Zhang J. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem Mater 2017;29:5777.

    Article  CAS  Google Scholar 

  48. Wu WL, Pan D, Li YF, Zhao GH, Jing LY, Chen SL. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim Acta 2015;152:126.

    Article  CAS  Google Scholar 

  49. Zhang ZM, Wei ZX, Wan MX. Nanostructures of polyaniline doped with inorganic acids. Macromolecules 2002;35:5937.

    Article  CAS  Google Scholar 

  50. Zheng N, Song Y, Wang L, Gao JF, Wang Y, Dong XL. Improved electrical and mechanical properties for the reduced graphene oxide-decorated polymer nanofiber composite with a core-shell structure. Ind Eng Chem Res 2019;58:15470.

    Article  CAS  Google Scholar 

  51. Zou Y, Chen XF, Guo WC, Liu XH, Li YW. Flexible and robust polyaniline composites for highly efficient and durable solar desalination. ACS Appl Energy Mater 2020;3:2634.

    Article  CAS  Google Scholar 

  52. Yin JL, Xu J, Xu WB, Liu S, Li WQ, Fang ZG, Lu CH, Xu ZZ. Tuning the wettability of solar absorbers towards high-efficiency solar vapor generation. Appl Therm Eng 2021;183:116224.

    Article  Google Scholar 

  53. Sun HX, Li YZ, Li JY, Zhu ZQ, Zhang WT, Liang WD, Ma CH, Li A. Facile preparation of a carbon-based hybrid film for efficient solar-driven interfacial water evaporation. ACS Appl Mater Interfaces 2021;13:33427.

    Article  CAS  Google Scholar 

  54. Jiang F, Liu H, Li Y, Kuang YD, Xu X, Chen CJ, Huang H, Jia C, Zhao XP, Hitz E, Zhou YB, Yang RG, Cui LF, Hu LB. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl Mater Interfaces 2018;10:1104.

    Article  CAS  Google Scholar 

  55. Liu C, Hong KV, Sun X, Natan A, Luan PC, Yang Y, Zhu HL. An “antifouling” porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination. J Mater Chem A 2020;8:12323.

    Article  CAS  Google Scholar 

  56. Xu N, Hu XZ, Xu WC, Li XQ, Zhou L, Zhu SN, Zhu J. Mushrooms as efficient solar steam-generation devices. Adv Mater 2017;29:1606762.

    Article  Google Scholar 

  57. Zhou L, Tan YL, Wang JY, Xu WC, Yuan Y, Cai WS, Zhu SN, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photo 2016;10:393.

    Article  CAS  Google Scholar 

  58. Wang YD, Wu X, Wu P, Zhao JY, Yang XF, Owens G, Xu HL. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci Bull 2021;66:2479.

    Article  CAS  Google Scholar 

  59. Hou BF, Kong DA, Chen ZH, Shi ZX, Cheng HY, Guo DD, Wang XB. Flexible graphene oxide/mixed cellulose ester films for electricity generation and solar desalination. Appl Therm Eng 2019;163:114322.

    Article  CAS  Google Scholar 

  60. Kim M, Yang K, Kim YS, Won JC, Kang P, Kim YH, Kim BG. Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer membranes for efficient solar desalination. Carbon 2020;164:349.

    Article  CAS  Google Scholar 

  61. Li TT, Fang QL, Xi XF, Chen YS, Liu F. Ultra-robust carbon fibers for multi- media purification via solar-evaporation. J Mater Chem A 2019;7:586.

    Article  CAS  Google Scholar 

  62. Han X, Besteiro LV, Koh CSL, Lee HK, Phang IY, Phan-Quang GC, Ng JY, Sim HYF, Lay CL, Govorov A, Ling XY. Intensifying heat using MOF-isolated graphene for solar-driven seawater desalination at 98% solar-to-thermal efficiency. Adv Funct Mater 2021;31:2008904.

    Article  CAS  Google Scholar 

  63. Li DY, Zhang XJ, Zhang SY, Wang DS, Wang ZY, Liu Y, Yu XF, Zhao Q, Xing BS. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere 2021;267:128916.

    Article  CAS  Google Scholar 

  64. Liang HX, Liao QH, Chen N, Liang Y, Lv GQ, Zhang PP, Lu B, Qu LT. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew Chem Int Ed 2019;58:19041.

    Article  CAS  Google Scholar 

  65. Zhou X, Zhao F, Guo Y, Rosenberger B, Yu G. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv 2019;5:5484.

    Article  Google Scholar 

  66. Kuang Y, Chen C, He SM, Hitz EM, Wang Y, Gan WT, Mi RY, Hu L. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv Mater 2019;31:e1900498.

    Article  Google Scholar 

  67. Li ZT, Wang CB, Su JB, Ling S, Wang W, An M. Fast-growing field of interfacial solar steam generation: evolutional materials, engineered architectures, and synergistic applications. Sol RRL 2019;3:1800206.

    Article  Google Scholar 

  68. Zhang WM, Yan J, Su Q, Han J, Gao JF. Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance. J Colloid Interface Sci 2022;612:66.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China (No. 51873178), the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. sklpme2020-4-03), Qing Lan Project of Yangzhou University and Jiangsu Province, High-end Talent Project of Yangzhou University, the Priority Academic Program Development of Jiangsu Higher Education Institutions, Postgraduate Research & Practice Innovation Program of Jiangsu province (No. KYCX18_2364, No. KYCX20_2977) and Outstanding Doctoral Dissertation Fund of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefeng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary File 1 (DOCX 1319 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Xing, W., Yan, J. et al. Stretchable and Superhydrophilic Polyaniline/Halloysite Decorated Nanofiber Composite Evaporator for High Efficiency Seawater Desalination. Adv. Fiber Mater. 4, 1233–1245 (2022). https://doi.org/10.1007/s42765-022-00172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00172-5

Keywords

Navigation