Skip to main content

Advertisement

Log in

Silicon-Phosphate Obtained from Rice Husk: a Sustainable Alternative to Phosphate Fertilizer Evaluated for Barley and Maize in Different Soils

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate a new silicon and phosphorus containing fertilizer, obtained from rice husk with phosphoric acid, in comparison with conventional triple super phosphate fertilizer, in terms of shoot growth, phosphorus and silicon uptake in barley and maize plants grown in both acidic and alkaline soils. The functional and structural properties of the silicon phosphate fertilizer were determined by Fourier-transform infrared spectroscopy and X-ray diffraction analysis; plant trials were established, firstly in barley and then subsequently in maize to simulate a crop rotation. Phosphorus sources were applied at the rates of 0, 20, and 80 mg kg−1 soil, and plants were grown in four different soils ranging in pH from 4.8 to 8.4 to determine the main and residual effect of silicon and phosphate fertilization. Dry weights of plants increased significantly in response to phosphorus fertilization in all soils, except for Nigde soil where a high level of plant-available phosphorus was present. The silicon phosphate treatments were more effective than triple super phosphate in obtaining a dry weight increase, especially in case of the subsequent crop maize. Phosphorus treatments increased the shoot concentration and total shoot uptake of phosphorus in barley and maize. These increases were more pronounced at the sufficient phosphorus dose of silicon phosphate. Shoot silicon concentrations of barley significantly decreased with phosphorus treatments, but total uptake of silicon increased in alkaline soils. However, shoot concentration and total uptake of silicon in the subsequent crop maize were higher, especially in case of the silicon phosphate treatments. In acidic soils, the treatments had no effect on the silicon concentration of the barley plant. This study indicates that new silicon phosphate fertilizer produced by hydrolysis of rice husk by using phosphoric acid represents a sustainable alternative to triple super phosphate, and it might be also a valuable source of silicon, especially in case of the subsequent crops in crop rotation systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Gunes.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskin, M.B., Akca, H., Kan, S. et al. Silicon-Phosphate Obtained from Rice Husk: a Sustainable Alternative to Phosphate Fertilizer Evaluated for Barley and Maize in Different Soils. J Soil Sci Plant Nutr 23, 3186–3196 (2023). https://doi.org/10.1007/s42729-023-01281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-023-01281-9

Keywords

Navigation