Skip to main content
Log in

Stigma receptivity with pollen in sunflower accompanies novel histochemical and biochemical changes in both male and female reproductive structures

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Pollen–pistil interaction is one of the widely studied cell–cell communication events in angiosperms. Pollination of the receptive pistil with compatible pollen and the subsequent steps that determines the success of fertilization depend on the cooperative events between pollen and pistil. Before the onset of these interactive events between pollen and pistil, both the participants prepare themselves for the upcoming complex cellular events. Receptive surface of stigma is characterized by the accumulation of reactive oxygen species and expression of specific biomolecules and enzymes, such as non-specific esterases and peroxidases. Pollen grains produce nitric oxide that scavenge reactive oxygen species generated on stigma surface after pollination and just prior to pollen germination. Present work reports accumulation of glycoproteins, lipids and phospholipids at the base of stigmatic papillae in mature receptive stigma. A 31 kDa glycoprotein has been detected in stigma homogenate. Stigma exhibit enhanced expression of peroxidase isoforms relative to buffer soluble fractions of pollen, i.e. intact pollen, internal pollen and tryphine fractions. A 54 kDa protease is expressed in pollen grains as well as stigma. Biochemical analyses of these biomolecules in pollen and stigma relative to other vegetative (corolla of ray and disc floret, bracts, young leaves) and reproductive (anther wall and ovary) parts highlight the implications of these biomolecules in pollen–stigma interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aelst ACV, Went JLV (1992) Ultrastructural and immuno-localization of pectins and glycoproteins in Arabidopsis thaliana pollen grains. Protoplasma 168:14–19

    Article  Google Scholar 

  • Alba CM, de Forchetti SM, Quesada MA, Valpuesta V, Tigier HA (1998) Localization and general properties of developing peach seed coat and endosperm peroxidase isoenzyme. Plant Growth Regul 17:7–11

    Article  CAS  Google Scholar 

  • Allen AM, Thorogood CJ, Hegarty MJ, Lexer C, Hiscock SJ (2011) Pollen–pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Ann bot 108:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagarozzi DA, Pike R, Potempa J, Travis J (1996) Purification and characterization of a novel endopeptidase in ragweed (Ambrosia artemisiifolia) pollen. J Biol Chem 271:26227–26232

    Article  CAS  PubMed  Google Scholar 

  • Bagarozzi DA, Potempa J, Travis J (1998) Purification and characterization of an arginine-specific peptidase from ragweed (Ambrosia artemisiifolia) pollen. Am J Respir Cell Mol Biol 18:363–369

    Article  CAS  PubMed  Google Scholar 

  • Bredemeijer GMM, Blaas J (1975) A possible role of a stylar peroxidase gradient in the rejection of incompatible growing pollen tubes. Acta Bot Neerl 24:37–48

    Article  CAS  Google Scholar 

  • Bredemeijer GMM (1982) Pollen peroxidases. J Palynol 18:1–11

    Google Scholar 

  • Bredemeijer GMM (1984) The role of peroxidases in pistil–pollen interactions. Theor Appl Genet 68:193–206

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Foolad MR (1997) Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol 35:821–831

    Article  CAS  PubMed  Google Scholar 

  • de Graff BHJ, Derksen JWM, Mariani C (2001) Pollen and pistil in the progamic phase. Sex Plant Reprod 14:41–55

    Article  Google Scholar 

  • Doughty J, Hdderson F, Mc Cubbin A, Dickinson H (1993) Interaction between a coating borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility)-locus-specific glycoprotein. Proc Natl Acad Sci USA 90:467–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubray G, Bezard G (1982) A highly sensitive periodic acid-silver stain for 1, 2-dio groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem 119:325–329

    Article  CAS  PubMed  Google Scholar 

  • Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl):S84–S97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobe K, Becker WM, Schlaak M, Petersen A (1999) Grass group I allergens (β-expansins) are novel, papain-related proteinases. Eur J Biochem 263:33–40

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison Y (2000) Control gates and micro-ecology: the pollen–stigma interaction in perspective. Ann Bot 85:5–13

    Article  PubMed Central  Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Article  Google Scholar 

  • Heimgartner U, Pietrzak M, Geertsen R, Brodelius P, da Silva Figueiredo AC, Pais MSS (1990) Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus. Phytochemistry 29:1405–1410

    Article  CAS  Google Scholar 

  • Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202

    Article  CAS  PubMed  Google Scholar 

  • Hiscock SJ, Doughty J, Willis AC, Dickinson HG (1995) A 7-kDa pollen coating-borne peptide from Brassica napus interacts with S-locus glycoproteins and S-locus-related glycoprotein. Planta 196:367–374

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy MK, Paolillo DJ, Faraday CD, Nasrallah JB, Nasrallah ME (1989) The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Dev Biol 134:462–472

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Maeda M, Kimura M, Lai OM, Tan SH, Hon SM, Chew FT (2002) Purification and characterization of a 31-kDa palm pollen glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. Biosci Biotechnol Biochem 66:820–827

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lewis D, Burrage S, Walls D (1967) Immunological reactions of single pollen grains, electrophoresis and enzymology of pollen protein exudates. J Exp Bot 18:371–378

    Article  CAS  Google Scholar 

  • Luu DT, Heizmann P, Dumas C (1997) Pollen–stigma adhesion in kale is not dependent on the self- (in) compatibility genotype. Plant Physiol 115:1221–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luu DT, Marty-Mazars D, Trick M, Dumas C, Heizmann P (1999) Pollen–stigma adhesion in Brassica spp. involves SLG and SLR1 glycoproteins. Plant Cell 11:251–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon H (1991) Theory and strategy in histochemistry: a guide to the selection and understanding of techniques. Springer-Verlag, Berlin

    Book  Google Scholar 

  • McInnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ (2006) The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalifus (Asteraceae). J Exp Bot 57:1846–1853

    Article  CAS  Google Scholar 

  • Poddubnaya-Arnoldi VA, Zinger NV, Petrovskaja TP, Polunina NN (1961) Histochemical study of the pollen grains and pollen tubes in the angiosperms. Rec Adv Bot 1:682–685

    Google Scholar 

  • Radlowski M (2005) Proteolytic enzymes from generative organs of flowering plants (Angiospermae). J Appl Genet 46:247–257

    PubMed  Google Scholar 

  • Radlowski M, Kalinowski A, Królikowski Z, Bartkowiak S (1994a) Protease activity from maize pollen. Phytochemistry 35:853–856

    Article  CAS  Google Scholar 

  • Radlowski M, Kalinowski A, Siedlewska A, Adamczyk J, Królikowski Z, Bartkowiak S (1994b) The regulating activity of native protease in maize pollen grains. Flower Newsl 17:49–52

    Google Scholar 

  • Radlowski M, Kalinowski A, Adamczyk J, Królikowski Z, Bartkowiak S (1996) Proteolytic activity in the maize pollen wall. Physiol Plant 98:172–178

    Article  CAS  Google Scholar 

  • Ramalho-Santos M, Pissarra J, Verissimo P, Pereira S, Salema R, Pires E, Faro CJ (1997) Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203:204–212

    Article  CAS  PubMed  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Shakya R (2008) Structural and biochemical analysis of pollen–stigma interaction in sunflower. Ph.D. thesis, Department of Botany, University of Delhi, India

  • Shakya R, Bhatla SC (2010) A comparative analysis of the distribution and composition of lipidic constituents and associated enzymes in pollen and stigma of sunflower. Sex Plant Reprod 23:163–172

    Article  CAS  PubMed  Google Scholar 

  • Shakya R, Bhatla SC (2018) Pollination, fertilization and seed development. In: Bhatla SC, Lal MA (eds) Plant physiology, development and metabolism. Springer, Singapore, pp 821–856

    Chapter  Google Scholar 

  • Sharma B, Bhatla SC (2013a) Accumulation and scavenging of reactive oxygen species and nitric oxide correlate with stigma maturation and pollen–stigma interaction in sunflower. Acta physiol plant 35:2777–2787

    Article  CAS  Google Scholar 

  • Sharma B, Bhatla SC (2013b) Structural analysis of stigma development in relation with pollen–stigma interaction in sunflower. Flora 208:420–429

    Article  Google Scholar 

  • Sharma B (2019) An analyses of flavonoids present in the inflorescence of sunflower. Braz J Bot 42:421–429

    Article  Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Oxford Press, New Delhi

    Google Scholar 

  • Suarez-Cervera M, Asturias JA, Vega-Maray A, Castells T, Lopez-Iglesias C, Ibarolla I, Arilla MC, Gabarayeva N, Seoane-Camba J (2005) The role of allergenic proteins Pla a 1 and Pla a 2 in the germination of Platanus acerifolia pollen grains. Sex Plant Reprod 18:101–112

    Article  CAS  Google Scholar 

  • Swanson R, Edlund AF, Preuss D (2004) Species specificity in pollen–pistil interactions. Annu Rev Genet 38:793–818

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Shiba H, Iwano M, Asano K, Hara M (2000) Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen–stigma adhesion. Proc Natl Acad Sci USA 97:3765–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umbach AL, Lalonde BA, Kandasamy MK, Nasrallah JB, Nasrallah ME (1990) Immunodetection of protein glycoforms encoded by 2 independent genes of the self-incompatibility multigene family of Brassica. Plant Physiol 93:739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verissimo P, Faro C, Moir AJG, Lin Y, Tang J, Pires E (1996) Purification, characterization and partial amino acid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. Eur J Biochem 235:762–768

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Council of Scientific and Industrial Research for financial support and is grateful to Professor S C Bhatla, Department of Botany, University of Delhi for providing laboratory facilities for this work.

Funding

This work was funded by Council of Scientific and Industrial Research, India (Grant number F.NO.2-56/2002(II)E.U.II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Shakya.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakya, R. Stigma receptivity with pollen in sunflower accompanies novel histochemical and biochemical changes in both male and female reproductive structures. Vegetos 33, 376–384 (2020). https://doi.org/10.1007/s42535-020-00118-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-020-00118-5

Keywords

Navigation