Skip to main content
Log in

Thermal effect in a rotating disk made of rubber and magnesium materials and having variable density

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

This paper deals with the study of thermal effect in a rotating disk made of rubber and magnesium materials, having variable density parameters using transition theory. The tangential stress is maximum at the inner surface of the disk made of rubber in comparison to that made of magnesium material for the initial yielding stage. With the introduction of density parameter and thermal condition, the values of tangential stress decreased in the inner and outer surfaces for disks made of rubber and magnesium materials for the initial and fully plastic stage. With the influence of density parameter, the rotating disk requires lesser values of angular speed for the initial yielding and fully plastic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sokolnikoff IS (1950) Mathematical theory of Elasticity, 2nd edn. McGraw-Hill Book Co., New York, pp 70–75

    Google Scholar 

  2. Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill Book Company, New York

    Google Scholar 

  3. Chakrabarty J (1998) Theory of plasticity. McGraw-Hill Book Company, New York

    Google Scholar 

  4. Reddy TY, Srinath H (1974) Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density. Int J Mech Sci 16(2):85–89

    Article  Google Scholar 

  5. Chang CI (1976) Stresses and displacements in rotating anisotropic disks with variable densities. AIAA J 14(1):116–117

    Article  Google Scholar 

  6. PardoenGC NudenbergRD, Swartout BE (1981) Achieving desirable stress states in thick rim rotating disks. Int J Mech Sci 23(6):367–382

    Article  Google Scholar 

  7. Güven U (1992) Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density. Int J Mech Sci 34(2):133–138

    Article  Google Scholar 

  8. Parmaksizoglu C, Guven U (1998) Plastic stress distribution in a rotating disk with rigid inclusion under a radial temperature gradient. Mech Struct Mach 26(1):9–20

    Article  Google Scholar 

  9. EraslanAN AkisT (2003) On the elastic-plastic deformation of a rotating disk subjected to a radial temperature gradient. Mech Based Design Struct Mach 31(4):529–561

    Article  Google Scholar 

  10. Alexandrova N, Alexandrov S (2004) Elastic-plastic stress distribution in a rotating annular disk. Mech Based Design Struct Mach 32(1):1–15

    Article  Google Scholar 

  11. Yang XJ, Baleanu D, Lazarevic MP, Cajic MS (2015) Fractal boundary value problems for integral and differential equations with local fractional operators. Therm Sci 19(3):959–966

    Article  Google Scholar 

  12. Yang XJ (2016) A new integral transform with an application in heat-transfer problem. Therm Sci 20(suppl. 3):677–681

    Article  Google Scholar 

  13. Yang XJ (2016) A new integral transform method for solving steady heat-transfer problem. Therm Sci 20(suppl. 3):639–642

    Article  Google Scholar 

  14. Yang XJ (2017) New integral transforms for solving a steady heat transfer problem. Therm Sci 21(suppl. 1):79–87

    Article  Google Scholar 

  15. Yang XJ (2017) A new integral transform operator for solving the heat-diffusion problem. Appl Math Lett 64:193–197

    Article  Google Scholar 

  16. XiaoJun Y, Machado JAT, Nieto JJ (2017) A new family of the local fractional PDEs. Fund Inform 151(1–4):63–75

    Google Scholar 

  17. Yang XJ, Feng G, Machado JAT, Dumitru B (2017) A new fractional derivative involving the normalized sinc function without singular kernel. Eur Phys J Spec Top 226(16–18):3567–3575

    Article  Google Scholar 

  18. Yang XJ, Feng YY, Carlo C, Mustafa I (2019) Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math Methods Appl Sci 42(11):4054–4060

    Article  Google Scholar 

  19. Salehian M, Shahriari B, Yousefi M (2019) Investigating the effect of angular acceleration of the rotating disk having variable thickness and density function on shear stress and tangential displacement. J Braz Soc Mech Sci Eng 41(31):2–11

    Google Scholar 

  20. Nayak P, Bhowmick S, Saha KN (2020) Elasto-plastic analysis of thermo-mechanically loaded functionally graded disks by an iterative vibrational method. Eng Sci Technol Int J 23(1):42–64

    Google Scholar 

  21. Sethi M, Thakur P (2020) Elasto-plastic deformation in isotropic material disk with shaft subjected to load and variable density. J Rubber Res 23(2):69–78

    Article  CAS  Google Scholar 

  22. Thakur P, Kumar N, Sukhvinder (2020) Elasto-plastic density variation in a deformable disk. Struct Integr Life 20(1):27–32

    Google Scholar 

  23. Thakur P, Sethi M, Gupta N, Gupta K (2020) Effect of density parameter in a disk made of orthotropic material and rubber. J Rubber Res 23(3):193–201

    Article  CAS  Google Scholar 

  24. Seth BR (1962) Transition theory of elastic–plastic deformation, creep and relaxation. Nature 195:896–897

    Article  CAS  Google Scholar 

  25. Seth BR (1966) Measure concept in mechanics. Int J Non-linear Mech 1(1):35–40

    Article  Google Scholar 

  26. Parkus H (1976) Thermo-Elasticity. Springer, New York, p 30

    Google Scholar 

  27. Thakur P (2009) Elastic-plastic transition stresses in a transversely isotropic thick-walled cylinder subjected to internal pressure and steady-state temperature. Thermal Sci 13(4):107–118

    Article  Google Scholar 

  28. Thakur P, Sethi M (2020) Elasto-plastic deformation in an orthotropic spherical shell subjected to temperature gradient. Math Mech Solids 25(1):26–34

    Article  Google Scholar 

  29. Thakur P, Sethi M (2020) Creep deformation and stress analysis in a transversely material disc subjected to rigid shaft. Math Mech Solids 25(1):17–25

    Article  Google Scholar 

  30. TemesgenAG SSB, Thakur P (2020) Elasto-plastic analysis in functionally graded thick-walled rotating transversely isotropic cylinder under a radial temperature gradient and uniform pressure. Math Mech Solids. https://doi.org/10.1177/1081286520934041

    Article  Google Scholar 

  31. Temesgen AG, Singh SB, Thakur P (2020) Modeling of creep deformation of a transversely isotropic rotating disc with a shaft having variable density and subjected to a thermal gradient. Therm Sci Eng Prog 20:100745. https://doi.org/10.1016/j.tsep.2020.100745

    Article  Google Scholar 

  32. Thakur P, Sethi M, Gupta N, Gupta K (2021) Thermal effects in rectangular plate made of rubber, copper and glass materials. J Rubb Res. https://doi.org/10.1007/s42464-020-00080-6

    Article  Google Scholar 

  33. Levitsky M, Shaffer BW (1975) Residual thermal stresses in a solid sphere form a thermosetting material. J Appl Mech Trans ASME 42(3):651–655

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Thakur.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organisation or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Sethi, M., Kumar, N. et al. Thermal effect in a rotating disk made of rubber and magnesium materials and having variable density. J Rubber Res 24, 403–413 (2021). https://doi.org/10.1007/s42464-021-00107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-021-00107-6

Keywords

Navigation