Skip to main content
Log in

Monitoring of Subsidence Over a Continuous Miner-Based Coal Mine Caving Panels Using PS-InSAR Technique

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Extraction of underground coal or mineral by the caving methods leads to surface deformations and the accurate measurement of this deformation is becoming a demanding task. Thus, the study demonstrates a Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique for surface subsidence measurement. The method was applied to measure the subsidence level over three mechanized depillaring panels with caving at GDK-11 Incline mine, India. The study was conducted using C-band data of Sentinel 1A/B sensors, which captured the data in the descending path from October 25, 2017 to March 07, 2020. The deformation level was measured based on the identified PS points in the specified region. In this case, 12 zones were identified (4 for each panel), based on the observation of permanent scatterer (PS) points. The maximum subsidence level and deformation rate range in 12 zones are −43.12 to −65 mm and −73.8 to 100 mm/year, respectively. The deformation level obtained through the PS-InSAR technique showed a good agreement with those of the field measurement. Thus, the PS-InSAR technique can detect and monitor the subsidence level over the goaved-out panel(s) of an underground mine using C-band SAR data of the Sentinal-1A/B sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Palchik V (2015) Bulking factors and extents of caved zones in weathered overburden of shallow abandoned underground workings. Int J Rock Mech Min 79:227–240

    Article  Google Scholar 

  2. Cui X, Wang J, Liu Y (2001) Prediction of progressive surface subsidence above longwall coal mining using a time function. Int. J. Rock Mech. Min 38:1057–1063

    Article  Google Scholar 

  3. Sheorey PR, Loui JP, Singh KB, Singh SK (2000) Ground subsidence observations and modified influence function method for complete subsidence prediction. Int J Rock Mech Min 37:801–818

    Article  Google Scholar 

  4. Singh, R D. (1997). Principles and practices of modern coal mining (2016th ed.). New Age International (P) Limited.

  5. Ge L, Chang HC, Rizos C (2007) Mine subsidence monitoring using multi-source satellite SAR images. Photogramm Eng Remote Sensing 73(3):259–266. https://doi.org/10.14358/PERS.73.3.259

    Article  Google Scholar 

  6. Bahuguna PP, Singh B, Srivastava AMC, Saxena NC (1993) Semi-empirical method for calculation of maximum subsidence in coal mines. Geotechnical and Geological Engineering 11(4):249–261. https://doi.org/10.1007/BF00466367

    Article  Google Scholar 

  7. Bahuguna PP (1995) Subsidence studies in Indian coalfields by a semi-empirical approach. Proc. International Symposium, The Hague 234:127–133. https://doi.org/10.1016/s0148-9062(97)87594-8

    Article  Google Scholar 

  8. Singh RP, Yadav RN (1995) Subsidence due to coal mining in India. Land Subsidence. In: Proceedings of the Fifth International Symposium on Land Subsidence, vol 234. The HagueIAHS Publ, pp 207–214. https://doi.org/10.1016/s0148-9062(96)93120-4

    Chapter  Google Scholar 

  9. Graham LC (1974) Synthetic interferometer radar for topographic mapping. Proc. IEEE 62(6):763–768. https://doi.org/10.1109/PROC.1974.9516

    Article  Google Scholar 

  10. Harger RO (1970) Synthetic aperture radar systems theory and design, (1st) edn. Academic Press

    Google Scholar 

  11. Rodriguez E, Martin JM (1992) Theory and design of interferometric synthetic aperture radars. IEE Proceedings, Part F: Radar and Signal Processing 139(2):147–159. https://doi.org/10.1049/ip-f-2.1992.0018

    Article  Google Scholar 

  12. Sherwin CW, Ruina JP, Rawcliffe RD (1962) Some early developments in synthetic aperture radar systems. IRE Transactions on Military Electronics MIL–6(2):111–115. https://doi.org/10.1109/IRET-MIL.1962.5008415

    Article  Google Scholar 

  13. Ferretti A, Prati C, Rocca C, Monti-Guarnieri A (1997b) Multibaseline SAR interferometry for automatic DEM reconstruction. In: InThird ERS Symposium on Space at the service of our Environment, vol 414 PART 3. European Space Agency, (Special Publication) ESA SP, pp 1809–1820

    Google Scholar 

  14. Ferretti A, Prati C, Rocca F (1999) Multibaseline insar DEM reconstruction: the wavelet approach. IEEE Trans. Geosci. Remote Sens 37(2 I):705–715. https://doi.org/10.1109/36.752187

    Article  Google Scholar 

  15. Nurtyawan R, Yulanda MF (2020) Lombok earthquakes using DInSAR techniques based on Sentinel 1A data (case study: Lombok, West Nusa Tenggara). IOP Conf Ser: Earth Environ Sci 500(1):012065. https://doi.org/10.1088/1755-1315/500/1/012065

    Article  Google Scholar 

  16. Thomas A (2020) Mapping of surface deformation and displacement associated with the 6.5 magnitude Botswana earthquake of April 03 2017 using DInSAR analysis. Geomat Environ Eng 14(4):81–100. https://doi.org/10.7494/geom.2020.14.4.81

    Article  Google Scholar 

  17. Chandni CK, Kumar S (2020) DInSAR based Analysis of January 2020 Eruption of Fernandina Volcano, Galapagos. In: 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS). IEEE, pp 250–253. https://doi.org/10.1109/InGARSS48198.2020.9358954

    Chapter  Google Scholar 

  18. Ferretti A, Monti-Guarnieri A, Rocca F, Prati C (1997a) Multi baseline interferometric techniques and applications. In: ERS SAR Interferometry, vol 406, pp 243–252

    Google Scholar 

  19. Smith LC (2002) Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology. Annals of the Association of American Geographers 92(3):385–398. https://doi.org/10.1111/1467-8306.00295

    Article  Google Scholar 

  20. Vajedian S, Motagh M, Nilfouroushan F (2015) StaMPS improvement for deformation analysis in mountainous regions: implications for the Damavand volcano and Mosha fault in Alborz. Remote Sens 7(7):8323–8347. https://doi.org/10.3390/rs70708323

    Article  Google Scholar 

  21. Ferretti, A., Prati, C. and Rocca, F. (2000a). Analysis of permanent scatterers in SAR interferometry. InIGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, 2, IEEE 761–763. https://doi.org/10.1109/igarss.2000.861695.

  22. The European Space Agency (n.d.), Sentinel online. Source available at: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/overview. (Accessed on 3rd April 2022)

  23. Euillades PA, Euillades LE, Rosell P, Roa Y (2020) Subsidence in Maceio, Brazil, characterized by dinsar and inverse modeling. In: 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), vol IV. IEEE, pp 313–317. https://doi.org/10.1109/LAGIRS48042.2020.9165567

    Chapter  Google Scholar 

  24. Hongdong F, Kazhong D, Chengyu J, Chuanguang Z, Jiqun X (2011) Land subsidence monitoring by D-InSAR technique. Min. Sci. Technol 21(6):869–872. https://doi.org/10.1016/j.mstc.2011.05.030

    Article  Google Scholar 

  25. Orellana F, Blasco JMD, Foumelis M, D’aranno PJV, Marsella MA, Mascio PD (2020) DInSAR for road infrastructure monitoring: case study highway network of Rome metropolitan (Italy). Remote Sens 12(22):1–17. https://doi.org/10.3390/rs12223697

    Article  Google Scholar 

  26. Chang HC, Ge L, Rizos C (2005) DInSAR for mine subsidence monitoring using multi-source satellite SAR images. In: Proceedings 2005 IEEE International Geoscience and Remote Sensing Symposium, vol 3. IEEE, pp 1742–1745. https://doi.org/10.1109/igarss.2005.1526339

    Chapter  Google Scholar 

  27. Chang HC, Ge L, Rizos C (2004) Application of repeat-pass DInSAR and GIS for underground mine subsidence monitoring. In: Proceedings of IGARSS 2004, pp 2815–2818

    Google Scholar 

  28. Chatterjee RS, Thapa S, Singh KB, Varunakumar G, Raju EVR (2015) Detecting, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques. J. Earth Syst. Sci 124(6):1359–1376. https://doi.org/10.1007/s12040-015-0606-5

    Article  Google Scholar 

  29. Gupta N, Syed TH, Athiphro A (2013) Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR). J. Earth Syst. Sci 122(5):1249–1258. https://doi.org/10.1007/s12040-013-0355-2

    Article  Google Scholar 

  30. Ishwar SG, Kumar D (2017) Application of DInSAR in mine surface subsidence monitoring and prediction. Curr Sci 112(1):46–51. https://doi.org/10.18520/cs/v112/i01/46-51

    Article  Google Scholar 

  31. Östblom, E. (2017). Possibilities to make measurements of ground subsidence more effective, using DInSAR, GNSS and levelling.

    Google Scholar 

  32. Parwata INS, Shimizu N, Grujić B, Zeka S, Čeliković R, Imamović E, Vrkljan I (2020) Monitoring the subsidence induced by salt mining in Tuzla, Bosnia and Herzegovina by SBAS-DInSAR method. Rock Mech Rock Eng 53(11):5155–5175. https://doi.org/10.1007/s00603-020-02212-1

    Article  Google Scholar 

  33. Sheng Y, Wang Y, Ge L, Rizos C (2012) Differential radar interferometry and its application in monitoring underground coal mining-induced subsidence. Science 1989:227–232

    Google Scholar 

  34. Dong S, Yin H, Yao S, Zhang F (2013) Detecting surface subsidence in coal mining area based on DInSAR technique. J. Earth Sci 24(3):449–456. https://doi.org/10.1007/s12583-013-0342-1

    Article  Google Scholar 

  35. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens 39(1):8–20. https://doi.org/10.1109/36.898661

    Article  Google Scholar 

  36. Mohammed OI, Saeidi V, Pradhan B, Yusuf YA (2014) Advanced differential interferometry synthetic aperture radar techniques for deformation monitoring: a review on sensors and recent research development. Geocarto Int 29(5):536–553. https://doi.org/10.1080/10106049.2013.807305

    Article  Google Scholar 

  37. Ferretti A, Savio G, Barzaghi R, Borghi A, Musazzi S, Novali F, Prati C, Rocca F (2007) Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans. Geosci. Remote Sens 45(5):1142–1153. https://doi.org/10.1109/TGRS.2007.894440

    Article  Google Scholar 

  38. Crosetto M, Devanthéry N, Cuevas-González M, Monserrat O, Crippa B (2015) Exploitation of the full potential of PSI data for subsidence monitoring. Proc. Int. Assoc. Hydrol 372:311–314. https://doi.org/10.5194/piahs-372-311-2015

    Article  Google Scholar 

  39. Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J. Photogramm. Remote Sens 115:78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011

    Article  Google Scholar 

  40. Tiwari RK, Malik K, Arora MK (2017) Urban subsidence detection using the sentinel-1 multi-temporal InSAR data. In: 38th Asian Conference on Remote Sensing - Space Applications: Touching Human Lives, ACRS 2017, vol 27, pp 2410–2414

    Google Scholar 

  41. Ziwen Z, Liu Y, Li F, Li Q, Ye W (2019) Land subsidence monitoring based on InSAR and inversion of aquifer parameters. EURASIP J Wirel Commun Netw. https://doi.org/10.1186/s13638-019-1602-2

  42. Ciampalini A, Raspini F, Lagomarsino D, Catani F, Casagli N (2016) Landslide susceptibility map refinement using PSInSAR data. Remote Sens Environ 184:302–315. https://doi.org/10.1016/j.rse.2016.07.018

    Article  Google Scholar 

  43. Kuri M, Arora MK, Sharma ML (2017) Slope movement estimation in Nainital town: determined by PS-InSAR technique using Sentinel-1 dataset. In: 38th Asian Conference on Remote Sensing - Space Applications: Touching Human Lives, ACRS 2017. Asian Association on Remote Sensing

    Google Scholar 

  44. Kuri M, Arora MK, Sharma ML (2018) Slope stability analysis in nainital town using PS and QPS InSAR technique. In: International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 4443–4446. https://doi.org/10.1109/IGARSS.2018.8517713

    Chapter  Google Scholar 

  45. Perski Z, Wojciechowski T, Borkowski A (2010) Persistent scatterer SAR interferometry applications on landslides in Carpathians (Southern Poland). Acta Geodyn. et Geomater 7(3):363–368

    Google Scholar 

  46. Tofani V, Raspini F, Catani F, Casagli N (2013) Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5(3):1045–1065. https://doi.org/10.3390/rs5031045

    Article  Google Scholar 

  47. Kumar S, Kumar D, Chaudhary SK, Singh N, Malik KK (2020) Land subsidence mapping and monitoring using modified persistent scatterer interferometric synthetic aperture radar in Jharia Coalfield, India. J. Earth Syst. Sci 129(1):146. https://doi.org/10.1007/s12040-020-01413-0

    Article  Google Scholar 

  48. Liu ZG, Bian ZF, Lei SG, Liu DL, Sowter A (2014) Evaluation of PS-DInSAR technology for subsidence monitoring caused by repeated mining in mountainous area. Trans Nonferrous Met Soc China 24(10):3309–3315. https://doi.org/10.1016/S1003-6326(14)63471-3

    Article  Google Scholar 

  49. Pawluszek-Filipiak K, Borkowski A (2021) Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. Eur J Remote Sens 54(sup1):18–30. https://doi.org/10.1080/22797254.2020.1759455

    Article  Google Scholar 

  50. Ram S, Kumar D, Singh AK, Kumar A, Singh R (2017) Field and numerical modelling studies for an efficient placement of roof bolts as breaker line support. Int J Rock Mech Min 93:152–162

    Article  Google Scholar 

  51. Singh R, Kumar A, Singh AK, Coggan J, Ram S (2016) Rib/snook design in mechanised depillaring of rectangular/square pillars. Int J Rock Mech Min 84:119–129

    Article  Google Scholar 

  52. Thapa S, Chatterjee RS, Singh KB, Kumar D (2016) Land subsidence monitoring using PS-InSAR technique for L-band SAR data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7:995–997. https://doi.org/10.5194/isprs-archives-xli-b7-995-2016

    Article  Google Scholar 

  53. Department of Project Planning, SCCL. (2015). Pre-feasibility report of GDK 11 incline.

  54. Perissin, D. 2009SARPROZ Software Manual, 569p. Available online: http://ihome.cuhk.edu.hk/~{}b122066/manual/index.html (accessed on 12 April 2022)

  55. Colesanti C, Ferretti A, Novali F, Prati C, Rocca F (2003) SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans Geosci Remote Sens 41(7):1685–1701. https://doi.org/10.1109/TGRS.2003.813278

    Article  Google Scholar 

  56. Kampes BM, Hanssen RF, Perski Z (2004) Radar interferometry with public domain tools. In: FRINGE 2003 workshop, vol 550. European Space Agency, (Special Publication) ESA SP, pp 59–68

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director NIT Rourkela for providing the computing facility for executing the work. The authors sincerely acknowledge the mission scientists and principal investigators of different Sentinel-1 products who provided the data used in this research effort. We also acknowledge the Radar System and Services for facilitating the SARPROZ software for data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gorai.

Ethics declarations

Ethical Statement

All ethical statements have been followed during the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 6 Characteristics of the satellite data used in the study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anil, J., Kumar, K., Ram, S. et al. Monitoring of Subsidence Over a Continuous Miner-Based Coal Mine Caving Panels Using PS-InSAR Technique. Mining, Metallurgy & Exploration 40, 719–736 (2023). https://doi.org/10.1007/s42461-023-00744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-023-00744-y

Keywords

Navigation