Skip to main content
Log in

Coupled Structure Vibration–Attitude Dynamics Evolution and Control of China’s Space Station

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

In this paper, a dynamics equation for Spacecraft has first been created using vector mechanics. Second, several attitude dynamics equations of spacecraft have been deduced. Third, a simulation of the coupled structure vibration–attitude dynamics evolution of China Space Station has been researched. Simulation results reveal the generating mechanism and evolutive law of the coupled structure vibration–attitude dynamics of spacecraft. Finally, a simplified experimental platform has been set up, and the experimental results verify the structure vibration–attitude dynamics evolution of the spacecraft and proposed experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yang J, Qu S, Lin J, Liu Z, Cui X, Wang C, Zhang D, Zhou L, Chen G (2015) Research progress of the structure vibration–attitude coordinated control of spacecraft. Intl J Aeronaut Sp Sci 16(4):112–121

    Google Scholar 

  2. Ding S (2014) Non-smooth attitude stabilization of a flexible spacecraft. IEEE Trans Aerosp Electron Syst 50(2):1163–1181

    Article  Google Scholar 

  3. Baozeng Y, Lemei Z (2014) Hybrid control of liquid-filled spacecraft maneuvers by dynamic inversion and input shaping. AIAA J 52(3):618–626

    Article  Google Scholar 

  4. Du H, Li S (2014) Attitude synchronization control for a group of flexible spacecraft. Automatica 50(2):646–651

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu Q, Li B, Huo X, Shi Z (2013) Spacecraft attitude tracking control under actuator magnitude deviation and misalignment. Aerosp Sci Technol 28(1):266–280

    Article  Google Scholar 

  6. Zhang Y, Zhang JR (2013) Combined control of fast attitude maneuver and stabilization for large complex spacecraft. Acta Mech Sin Xuebao 29(6):875–882

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu Q, Xiao B (2012) Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation. Aerosp Sci Technol 23(1):63–74

    Article  Google Scholar 

  8. Hu Q, Xiao B, Friswell MI (2012) Fault tolerant control with Hinfin performance for attitude tracking of flexible spacecraft. IET Control Theory Appl 6:1388–1399

    Article  MathSciNet  Google Scholar 

  9. Hu Q, Zhang Y, Huo X, Xiao B (2011) Adaptive integral-type sliding mode control for spacecraft attitude maneuvering under actuator stuck failures. Chin J Aeronaut 24(1):32–45

    Article  Google Scholar 

  10. Malekzadeh M, Naghash A, Talebi HA (2011) A robust nonlinear control approach for tip position tracking of flexible spacecraft. IEEE Trans Aerosp Electron Syst 47(4):2423–2434

    Article  MATH  Google Scholar 

  11. Yeh F-K (2010) Sliding-mode adaptive attitude controller design for spacecrafts with thrusters. IET Control Theory Appl 4(7):1254

    Article  Google Scholar 

  12. Azadi E, Eghtesad M, Fazelzadeh S, Azadi M (2012) Vibration suppression of smart nonlinear flexible appendages of a rotating satellite by using hybrid adaptive sliding mode/Lyapunov control. J Vib Control 19(7):975–991

    Article  MathSciNet  Google Scholar 

  13. Erdong J, Zhaowei S (2010) Passivity-based control for a flexible spacecraft in the presence of disturbances. Int J Non Linear Mech 45(4):348–356

    Article  Google Scholar 

  14. Hu Q, Zhang J (2016) Attitude control and vibration suppression for flexible spacecraft using control moment gyroscopes. J Aerosp Eng 29(1):04015027

    Article  Google Scholar 

  15. Hu Q (2009) Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn 55(4):301–321

    Article  MathSciNet  MATH  Google Scholar 

  16. Qinglei Hu, Xiao Bing (2011) Robust adaptive backstepping attitude stabilization and vibration reduction of flexible spacecraft subject to actuator saturation. J Vib Control 17(11):1657–1671

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu QL, Cao J, Zhang YZ (2009) Robust backstepping sliding mode attitude tracking and vibration damping of flexible spacecraft with actuator dynamics. J Aerosp Eng 22(2):139–152

    Article  Google Scholar 

  18. Song X-J, Yue B-Z, Wu W-J (2015) Investigation on attitude disturbance control and vibration suppression for fuel-filled flexible spacecraft. Acta Mech Sin 31(4):581–588

    Article  MathSciNet  MATH  Google Scholar 

  19. Chu Z, Cui J, Ren S, Ge SS (2015) Semi-physical experimental study of adaptive disturbance rejection filter approach for vibration control of a flexible spacecraft. Proc Inst Mech Eng Part G J Aerosp Eng 229(11):2085–2094

    Article  Google Scholar 

  20. Yue B-Z (2011) Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J 49(10):2090–2099

    Article  MATH  Google Scholar 

  21. Yue B, Song X (2011) Heteroclinic bifurcations in attitude maneuver of coupled slosh-spacecraft with flexible appendage. Sci China Technol Sci 54(8):2090–2099

    Article  MATH  Google Scholar 

  22. Shahravi M, Azimi M (2015) A comparative study for collocated and non-collocated sensor/actuator placement in vibration control of a maneuvering flexible satellite. Proc Inst Mech Eng Part C J Mech Eng Sci 229(8):1415–1424

    Article  Google Scholar 

  23. Zhang Y, Xu S (2011) Vibration isolation platform for control moment gyroscopes on satellites. J Aerosp Eng 25(4):641–652

    Article  Google Scholar 

  24. Hu Q, Zhang J (2015) Maneuver and vibration control of flexible manipulators using variable-speed control moment gyros. Acta Astronaut 113:105–119

    Article  Google Scholar 

  25. Ni Z, Mu R, Xun G, Wu Z (2016) Time-varying modal parameters identification of a spacecraft with rotating flexible appendage by recursive algorithm. Acta Astronaut 118:49–61

    Article  Google Scholar 

  26. Chen T, Wen H, Hu H, Jin D (2016) Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronaut 121:271–281

    Article  Google Scholar 

  27. Yang D, Yue B (2013) Attitude manoeuvre of spacecraft with long cantilever beam appendage by momentum wheel. Int J Control 86(2):360–368

    Article  MathSciNet  MATH  Google Scholar 

  28. Ayoubi MA, Sendi C (2013) Takagi-Sugeno fuzzy model-based control of spacecraft with flexible appendage. J Astronaut Sci 61:1–21

    Google Scholar 

  29. Sales TP, Rade DA, De Souza LCG (2013) Passive vibration control of flexible spacecraft using shunted piezoelectric transducers. Aerosp Sci Technol 29(1):403–412

    Article  Google Scholar 

  30. Lee KW, Singh SN (2012) L1 adaptive control of flexible spacecraft despite disturbances. Acta Astronaut 80:24–35

    Article  Google Scholar 

  31. Azadi M, Fazelzadeh SA, Eghtesad M, Azadi E (2011) Vibration suppression and adaptive-robust control of a smart flexible satellite with three axes maneuvering. Acta Astronaut 69(5):307–322

    Article  Google Scholar 

  32. Maganti GB, Singh SN (2007) Simplified adaptive control of an orbiting flexible spacecraft. Acta Astronaut 61(7–8):575–589

    Article  Google Scholar 

  33. Malekzadeh M, Naghash A, Talebi H (2010) Control of flexible spacecraft using dynamic inversion and u-synthesis. J Vib Control 17(13):1938–1951

    Article  MathSciNet  MATH  Google Scholar 

  34. Loria A, Espinosa-Perez G, Avila-Becerril S (2014) Global adaptive linear control of the permanent-magnet synchronous motor. Int J Adapt Control Signal Process 28:971–986

    Article  MATH  Google Scholar 

  35. Azadi M, Eghtesad M, Fazelzadeh SA, Azadi E (2015) Dynamics and control of a smart flexible satellite moving in an orbit. Multibody Syst Dyn 35:1–23

    Article  MathSciNet  MATH  Google Scholar 

  36. Sendi C, Ayoubi MA (2016) Robust-optimal fuzzy model-based control of flexible spacecraft with actuator constraints. J Dyn Syst Meas Control 138:091004

    Article  Google Scholar 

  37. Zhong C, Guo Y, Yu Z, Wang L, Chen Q (2016) Finite-time attitude control for flexible spacecraft with unknown bounded disturbance. Trans Inst Meas Control 38(2):240–249

    Article  Google Scholar 

  38. Xiao B, Hu Q, Wang D (2015) Spacecraft attitude fault tolerant control with terminal sliding-mode observer. J Aerosp Eng 28(1):04014055

    Article  Google Scholar 

  39. Wu S, Radice G, Sun Z (2014) Robust finite-time control for flexible spacecraft attitude maneuver. J Aerosp Eng 27:185–190

    Article  Google Scholar 

  40. Pukdeboon C (2014) Adaptive-gain second-order sliding mode control of attitude tracking of flexible spacecraft. Math Probl Eng 2014:312494

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu H, Guo L, Zhang Y (2012) An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn 67(3):2081–2088

    Article  MathSciNet  MATH  Google Scholar 

  42. Hu Q (2012) Adaptive nonlinear proportional-derivative type fault tolerant control for flexible spacecraft attitude maneuvers under bounded disturbances. J Aerosp Eng 25(2):178–190

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant no. 51605308) “Co-evolution of fractional order coupled structure vibration–attitude dynamic and control of spacecraft”; The Liaoning Province doctor Science Research Fund Project “Co-evolution of fractional order coupled structure vibration–attitude dynamic and control of China Space Station”(Grant no. 201601178); The Liaoning Province “13th Five Year Plan” Higher Education Research Fund Project “Teaching quality monitoring system and safeguard mechanism research on Aerospace engineering majors” (Grant no. GHZD160012); The Liaoning Province Department of Education Fund Project “Study of fractional order coupled structure vibration–attitude dynamic and control of spacecraft” (Grant no. L2015414); The Liaoning Province Department of Education Fund Project “Research and practice on specialty of aerospace engineering based on recognition for engineering education”(Grant no. 030201619);“Exploration and Practice of ‘Theory+Interesting+Research’ Innovative Teaching Mode”(Grant no. YJS2014-11); “Reform and Practice of ‘Theory+Interesting+Research’ Innovative Teaching Mode”(Grant no. JG2017011); “Research on Intelligent Integrated Control of Coupling between Space Solar Power Station Structure Vibration and Attitude Control (Grant no. 13YB22)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, F. Coupled Structure Vibration–Attitude Dynamics Evolution and Control of China’s Space Station. Int. J. Aeronaut. Space Sci. 20, 126–138 (2019). https://doi.org/10.1007/s42405-018-0124-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-018-0124-1

Keywords

Navigation