Skip to main content

Advertisement

Log in

Nutritional and mineral composition of four wild edible mushrooms from Jammu and Kashmir, India

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Wild edible mushrooms serve as a garnish that can be taken as routine health food or as functional food. They are enriched with myriad nutrients and bioactive compounds that can be developed into food supplements, hence conferring anti-diabetic, cardiovascular and immune-modulating properties. In the present investigation, four wild edible mushroom species viz., Apioperdon pyriforme, Helvella elastica, Morchella conica and Rhizopogon luteolus collected from different locations of Jammu and Kashmir were examined for their nutritional composition. Among these, Morchella conica revealed maximum protein (24.5 g/100 g) and crude fibre (4.8%). While the dried sporocarps of Rhizopogon luteolus possessed maximum total phenolic content (12.30 mg/g), Other components including total ascorbic acid content (1.71 mg/g) and total flavonoid content (0.78 mg/g) were present in maximum proportion in fruit bodies of Rhizopogon luteolus and Helvella elastica, respectively. Furthermore, considering the fact that wild mushrooms have good bioaccumulation potential, these wild edible mushrooms were also assessed for their mineral contents such as Cu, Fe, Zn and Mg. Amongst these, Fe was found present in higher concentration ranging from 165.5–547 ppm followed by Zn (22.2–84 ppm) and Mg (22.4–55.5 ppm). Concentration of copper was found to be lowest in the investigated wild edible mushrooms (23.1–44.5 ppm). However, no copper was detected in Rhizopogon luteolus. The present study demonstrates that the investigated mushrooms are rich in nutrients and essential minerals specifying that they may be further used as functional elements in the composition of innovative food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya K, Ghosh S, Khatua S, Mitra P (2016) Pharmacognostic standardization and antioxidant capacity of an edible mushroom Laetiporus sulphureus. J Cons Prot Food Saf 11:33–42

    CAS  Google Scholar 

  • Akata I, Ergonul B, Kalyoncu F (2012) Chemical compositions and antioxidant activities of sixteen wild edible mushroom species grown in Anatolia. Int J Pharm 8:134–138

    CAS  Google Scholar 

  • Alonso J, García MA, Perez-Lopez M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Cont Toxicol 44:180–188

    CAS  Google Scholar 

  • Ao T, Deb CR (2019) Nutritional and antioxidant potential of some wild edible mushrooms of Nagaland, India. J Food Sci Tech 56:1084–1089

    CAS  Google Scholar 

  • Arora D (1986) Mushroom demystified. A comprehensive guide to fleshy fungi. Ten Speed Press, Berkeley

    Google Scholar 

  • Atri NS, Sharma SK, Joshi R, Gulati A (2013) Nutritional and nutraceutical composition of five wild culinary-medicinal species Of genus Pleurotus (Higher Basidiomycetes) from Northwest India. Int J Med Mush 15:49–56

    CAS  Google Scholar 

  • Azieana J, Zainon MN, Noriham A, Nor RM (2017) Total phenolic and flavonoid content and antioxidant activities of ten Malaysian wild mushrooms. Open Access Lib J 4:1–9

    Google Scholar 

  • Barros L, Calhelha RC, Vaz JA, Estevinho LM, Ferreira ICFR, Baptista P, Estevirho LM (2007) Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Eur Food Res Technol 225:151–156

    CAS  Google Scholar 

  • Bessette AE, Bessette AR, Fischer DW (1997) Mushrooms of Northeastern North America. Syracuse University Press, Hong Kong

    Google Scholar 

  • Boonsong S, Klaypradi W, Wilaipun P (2016) Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric Nat Res 50:89–97

    CAS  Google Scholar 

  • Brzezicha-Cirocka J, Medyk M, Falandysz J, Szefer P (2016) Bio-and toxic elements in edible wild mushrooms from two regions of potentially different environmental conditions in Eastern Poland. Env Sci Pol Res 23:21517–21522

    CAS  Google Scholar 

  • Buruleanu LC, Radulescu C, Georgescu AA, Danet FA, Olteanu RL, Nicolescu CM, Dulama ID (2018) Statistical characterization of the phytochemical characteristics of edible mushroom extracts. Anal Lett 51:1039–1059

    CAS  Google Scholar 

  • Butkhup L, Samappito W, Jorjong S (2018) Evaluation of bioactivities and phenolic contents of wild edible mushrooms from Northeastern Thailand. Food Sci Technol 27:193–202

    CAS  Google Scholar 

  • Chadha M, Atri NS (2017) Nutritional and nutraceutical characterization of three wild edible mushrooms from Haryana, India. Mycosphere 8:1035–1043. https://doi.org/10.5943/mycosphere/8/8/4

    Article  Google Scholar 

  • Chang ST, Miles PG (2004) Mushrooms cultivation, nutritive value, medicinal effect and environmental impact, 2nd edn. CRC Press, Boca Raton, p 480

    Google Scholar 

  • Cheung LM, Cheung PCK, Ooi VEC (2003) Antioxidant activity and total phenolics of edible mushrooms. Food Chem 81:249–255

    CAS  Google Scholar 

  • Deb U, Jagannath A, Anilkumar KR, Mallesha CS (2018) Nutritional studies and antioxidant profile of pickled oyster mushrooms of North East India. Def Life Sci J 3:64–70

    Google Scholar 

  • Dursun N, Ozcan MM, Kasik G, Ozturk C (2006) Mineral contents of 34 species of edible mushrooms growing wild in Turkey. J Sci Food Agric 86:1087–1094

    CAS  Google Scholar 

  • FAO/WHO (1991) Protein quality evaluation: report of the joint FAO/WHO expert consultation, FAO Food and Nutrition Paper 51. FAO, Rome

    Google Scholar 

  • FAO/WHO (1998) Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert consultation, Bangkok, Thailand, pp 21–30

  • Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Cur Med Chem 16:1543–1560

    CAS  Google Scholar 

  • Gasecka M, Mleczek M, Siwulski M, Niedzielski P (2016) Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur Food Res Technol 242:723–732

    CAS  Google Scholar 

  • Gasecka M, Siwulski M, Mleczek M (2018) Evaluation of bioactive compounds content and antioxidant properties of soil-growing and wood-growing edible mushrooms. J Food Proces Preser 42:1–10

    Google Scholar 

  • Gursoy N, Sarikurkcu C, Cengiz M, Solak MH (2009) Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem Toxicol 47:2381–2388

    CAS  PubMed  Google Scholar 

  • Heleno SA, Barros L, Sousa MJ, Martins A, Ferreira ICFR (2010) Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem 49:1443–1450

    Google Scholar 

  • Isiloglu MMM, Merdivan M, Yilmaz F (2001) Heavy metal contents in some macrofungi collected in the Northwestern part of Turkey. Arch Environ Contam Toxicol 41:1–7

    CAS  PubMed  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundstrom U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock-eating fungi. Nature 389:682–768

    CAS  Google Scholar 

  • Kalac P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    CAS  Google Scholar 

  • Kalac P (2012) Chemical composition and nutritional value of European species of wild growing mushrooms. In: Andres S, Baumann N (eds) Mushrooms: types, properties and nutrition. Nova Science Publishers, New York, pp 130–151

    Google Scholar 

  • Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    CAS  Google Scholar 

  • Keles A, Koca L, Genccelep H (2011) Antioxidant properties of wild edible mushrooms. J Food Process Technol 2:130–135. https://doi.org/10.4172/2157-7110.1000130

    Article  CAS  Google Scholar 

  • Khatua S, Ghosh S, Acharya K (2017) Chemical composition and biological activities of methanol extract from Macrocybe lobayensis. J App Pharm Sci 7:144–151. https://doi.org/10.7324/JAPS.2017.71021

    Article  CAS  Google Scholar 

  • Kozarski M, Klaus A, Vunduk J, Zizak Z, Niksic M, Jakovljevic D, Vrvic MM, Griensven LJLD (2015) Nutraceutical properties of the methanolic extract of edible mushroom Cantharellus Cibarius (Fries): primary mechanisms. Food Func 6:1875–1886

    CAS  Google Scholar 

  • Lalotra P, Bala P, Kumar S, Sharma YP (2016) Biochemical characterization of some wild edible mushrooms from Jammu and Kashmir. Proc Natl Acad Sci India Sect B Biol Sci 88:539–545

    Google Scholar 

  • Lima JA, Tellesa CBS, Sabrya DA, Costaa MSSP, Melo-Silveiraa RF, Trindade ES, Sassaki GL, Wisbeck E, Furlan SA, Leita EL, Rocha HAO (2011) Sulfation of the extracellular polysaccharide produced by the edible mushroom Pleurotus sajor-Caju alters its antioxidant, anticoagulant and antiproliferative properties in vitro. Carb Pol 85:514–521

    Google Scholar 

  • Magrati TP, Tripathee HP, Devkota KP (2011) Nutritional analysis of Morchella conica and its role on rural livelihood. Nep J Sci Technol 12:119–126

    Google Scholar 

  • Mallikarjuna SE, Ranjini A, Haware DJ, Vijayalakshmi MR, Shashirekha MN, Rajarathnam S (2013) Mineral composition of four edible mushrooms. J Chem 1:1–5

    Google Scholar 

  • Mattila P, Konko K, Eurola M, Pihlava JM, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V (2001) Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 49:2343–2348

    CAS  PubMed  Google Scholar 

  • Maynard AJ (1970) Extraction methods and separation processes in methods of food analysis. In: Joslyn AM (ed) A series of monographs, 2nd edn. Academic Press, New York, pp 141–155

    Google Scholar 

  • Mdachi SJM, Nkunya MHN, Nyigo VA, Urasa IT (2004) Amino acid composition of some Tanzanian wild edible mushrooms. Food Chem 86:179–182

    CAS  Google Scholar 

  • Nakalembe I, Kabasa JD, Olila D (2015) Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. Springerplus 4:433–448

    PubMed  PubMed Central  Google Scholar 

  • Niedzielski P, Mleczek M, Budka A, Rzymski P, Siwulski M, Jasińska A, Gąsecka M, Budzyńska S (2017) A screening study of elemental composition in 12 marketable mushroom species accessible in Poland. Eur Food Res Technol 243:1759–1771

    CAS  Google Scholar 

  • Nikkarinen M, Mertanen E (2004) Impact of geological origin ontrace element composition of edible mushrooms. J Food Comp Anal 17:301–310

    CAS  Google Scholar 

  • Ouzouni PK, Petridis D, Koller WD, Riganakos KA (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 115:1575–1580

    CAS  Google Scholar 

  • Oyetayo FL, Akindahunsi AA, Oyetayo VO (2007) Chemical profile and amino acids composition of edible mushrooms Pleurotus sajor-Caju. Nutr Health 18:383–389

    CAS  PubMed  Google Scholar 

  • Ozturk I, Sahan S, Sahin U, Ekici L, Sagdic O (2010) Bioactivity and mineral contents of wild-grown edible Morchella conica in the Mediterranean region. J Cons Prot Food Safety 5:453–457

    CAS  Google Scholar 

  • Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2006) Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem 54:9764–9772

    CAS  PubMed  Google Scholar 

  • Rahi DK, Malik D (2016) Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Myco 10:1–18. https://doi.org/10.1155/2016/7654123

    Article  Google Scholar 

  • Ramesh C, Pattar MG (2010) Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of Western Ghats of Karnataka, India. Pharm Res 2:107–112. https://doi.org/10.4103/0974-8490.62953

    Article  CAS  Google Scholar 

  • Rudawska M, Leski T (2005) Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem 92:499–506

    CAS  Google Scholar 

  • Saltarelli R, Ceccaroli CP, Barbieri E, Stocchi V (2008) Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chem 109:8–16

    CAS  PubMed  Google Scholar 

  • Salvador C, Martins MR, Vincente H, Caldeira AT (2018) A data mining approach to improve inorganic characterization of Amanita Ponderosa mushrooms. Int J Anal Chem 20:1–18

    Google Scholar 

  • Sanchez C (2017) Reactive oxygen species and antioxidant properties from mushrooms. Syn Syst Biotech 2:13–22

    Google Scholar 

  • Schellmann B, Hilz MJ, Optiz O (1980) Cadmium-Und Kupferausscheidung Nach Aufnahme Von Champignon-Mahizeiten. Z Lebensm Unters Forsch 171:189–192 (In German)

    CAS  PubMed  Google Scholar 

  • Sharma SK, Gautam N (2017) Chemical and bioactive profiling and biological activities of coral fungi from Northwestern Himalayas. Sci Rep 7:46570–46583

    Google Scholar 

  • Sharma SK, Atri NS (2014) Nutraceutical composition of wild species of genus Lentinus Fr. from Northern India. Cur Res Env App Mycol 4:11–32

    Google Scholar 

  • Sudheep NM, Sridhar KR (2014) Nutritional composition of two wild mushrooms consumed by the tribals of the Western Ghats of India. Mycology 5:64–72

    PubMed  PubMed Central  Google Scholar 

  • Toledo CV, Barroetavena C, Fernandes A, Barros L, Ferreira ICFR (2016) Chemical and antioxidant properties of wild edible mushrooms from native Nothofagus Spp. Forest, Argentina. Molecules 21:1201–1216

    PubMed Central  Google Scholar 

  • Uzun Y, Genccelep H, Kaya A, Akcay ME (2011) The mineral contents of some wild edible mushrooms. Ekoloji 20:6–12. https://doi.org/10.5053/ekoloji.2011.802

    Article  CAS  Google Scholar 

  • Vieira V, Fernandes A, Barros L, Glamoclija J, Ciric A, Stojkovic D, Martins A, Sokovic M, Ferreira ICFR (2016) Wild Morchella Conica Pers. from different origins: a comparative study of nutritional and bioactive properties. J Sci Food Agric 96:90–98

    CAS  PubMed  Google Scholar 

  • Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. J Med Plants Res 4:2598–2604

    Google Scholar 

  • Xu X, Yan H, Chen J, Zhang X (2011) Bioactive proteins from mushrooms. Biotech Adv 29:667–674

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Botany (UGC-SAP DRS II), University of Jammu, Jammu and Kashmir, for providing laboratory facilities. The first and second author gratefully acknowledge the financial support from CSIR, New Delhi and DST (Department of Science and Technology), New Delhi, respectively.

Funding

This work was partially funded by the Council of Scientific and Industrial Research, India, Grant number 09/100(0202)/2017-EMR-1 and Department of Science and Technology, Ministry of Science and Technology under Inspire Fellowship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, U., Lalotra, P. & Sharma, Y.P. Nutritional and mineral composition of four wild edible mushrooms from Jammu and Kashmir, India. Indian Phytopathology 73, 313–320 (2020). https://doi.org/10.1007/s42360-020-00230-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-020-00230-1

Keywords

Navigation