Skip to main content
Log in

Study of the Influence of Ga and In Doping on Organic Residuals in Solution-Processed IGZO Thin Films Deposited at Low-Temperature

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the synthesis and characterization of IGZO films was carried out from the individual analysis of ZnO films doped at different In3+ and Ga3+ wt.%. The thin films were obtained by solution processes at low temperature (200 °C). The films were characterized by X-ray Diffraction, optical transmittance, FTIR spectroscopy and resistivity. It was found that the variation of doping affected the content of organic residuals in the deposited films. In addition, the fabrication and characterization of Metal–Insulator–Semiconductor capacitors on plastic substrates are presented. Interestingly, there was a correlation in the hysteresis with the doping of In3+ and Ga3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.S. Rim et al., Interface engineering of metal oxide semiconductors for biosensing applications. Adv. Mater. Interfaces 4(10), 1700020 (2017). https://doi.org/10.1002/admi.201700020

    Article  CAS  Google Scholar 

  2. X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15(4), 383–396 (2016). https://doi.org/10.1038/nmat4599

    Article  CAS  Google Scholar 

  3. C. Zhang, G. Liu, X. Geng, K. Wu, M. Debliquy, Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: a review. Sens. Actuators A Phys. 309, 112026 (2020). https://doi.org/10.1016/j.sna.2020.112026

    Article  CAS  Google Scholar 

  4. J.C. Costa et al., Flexible IGZO TFTs and their suitability for space applications. IEEE J. Electron Devices Soc. 7, 1182–1190 (2019). https://doi.org/10.1109/JEDS.2019.2931614

    Article  CAS  Google Scholar 

  5. A. Jilani, M.S. Abdel-wahab, A.H. Hammad, Advance deposition techniques for thin film and coating. (IntechOpen, 2017). https://doi.org/10.5772/65702

  6. J. Leng et al., Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 48(11), 3015–3072 (2019). https://doi.org/10.1039/C8CS00904J

    Article  CAS  Google Scholar 

  7. J. Troughton, D. Atkinson, Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status. J. Mater. Chem. C 7(40), 12388–12414 (2019). https://doi.org/10.1039/C9TC03933C

    Article  CAS  Google Scholar 

  8. J.W. Park, B.H. Kang, H.J. Kim, A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 30(20), 1904632 (2020). https://doi.org/10.1002/adfm.201904632

    Article  CAS  Google Scholar 

  9. S.-Y. Sung, K.-M. Jo, S.-Y. Kim, J.-H. Lee, J.-J. Kim, Y.-W. Heo, Effects of post-annealing treatments on the transfer characteristics of amorphous indium-gallium-zinc oxide thin film transistors. J. Nanoelectron. Optoelectron. 6, 310–314 (2011). https://doi.org/10.1166/jno.2011.1175

    Article  CAS  Google Scholar 

  10. R. Chen, L. Lan, Solution-processed metal-oxide thin-film transistors: a review of recent developments. Nanotechnology 30(31), 312001 (2019). https://doi.org/10.1088/1361-6528/ab1860

    Article  CAS  Google Scholar 

  11. R.A. John et al., Low-temperature chemical transformations for high-performance solution-processed oxide transistors. Chem. Mater. 28(22), 8305–8313 (2016). https://doi.org/10.1021/acs.chemmater.6b03499

    Article  CAS  Google Scholar 

  12. K.Y. Cheong, N. Muti, S.R. Ramanan, Electrical and optical studies of ZnO: Ga thin films fabricated via the sol–gel technique. Thin Solid Films 410(1), 142–146 (2002). https://doi.org/10.1016/S0040-6090(02)00286-9

    Article  CAS  Google Scholar 

  13. M.H. Cho et al., Impact of cation compositions on the performance of thin-film transistors with amorphous indium gallium zinc oxide grown through atomic layer deposition. J. Inf. Disp. 20(2), 73–80 (2019). https://doi.org/10.1080/15980316.2018.1540365

    Article  CAS  Google Scholar 

  14. Y.-H. Lin, J.-C. Chou, Interface study on amorphous indium gallium zinc oxide thin film transistors using high-k gate dielectric materials. J. Nanomater. 2015, 782786 (2015). https://doi.org/10.1155/2015/782786

    Article  CAS  Google Scholar 

  15. M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano Micro Lett. 9(1), 3 (2016). https://doi.org/10.1007/s40820-016-0106-4

    Article  CAS  Google Scholar 

  16. M. Miyakawa, M. Nakata, H. Tsuji, Y. Fujisaki, T. Yamamoto, Application of hydrogen injection and oxidation to low temperature solution-processed oxide semiconductors. AIP Adv. 6(8), 85016 (2016). https://doi.org/10.1063/1.4961711

    Article  CAS  Google Scholar 

  17. M. Uenuma et al., Influence of carbon impurities and oxygen vacancies in Al2O3 film on Al2O3/GaN MOS capacitor characteristics. AIP Adv. 8(10), 105103 (2018). https://doi.org/10.1063/1.5041501

    Article  CAS  Google Scholar 

  18. P. Reddy et al., Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control. J. Appl. Phys. 120(18), 185704 (2016). https://doi.org/10.1063/1.4967397

    Article  CAS  Google Scholar 

  19. A. de Jamblinne, G. de Meux, J. Pourtois, P.H. Genoe, Defects in amorphous semiconductors: the case of amorphous indium gallium zinc oxide. Phys. Rev. Appl. 9(5), 54039 (2018). https://doi.org/10.1103/PhysRevApplied.9.054039

    Article  Google Scholar 

  20. D.A. Neamen, Semiconductor physics and devices. Basic principles (McGraw-Hill, 2003), p. 56

  21. M.A. Dominguez, J.L. Pau, A. Redondo-Cubero, Flexible zinc nitride thin-film transistors using spin-on glass as gate insulator. IEEE Trans. Electron Devices 65(3), 1014–1017 (2018). https://doi.org/10.1109/TED.2018.2797254

    Article  CAS  Google Scholar 

  22. M. Dominguez, J. Pau, A. Redondo-Cubero, Unusual ambipolar behavior in Zinc Nitride thin-film transistors on plastic substrates. Semicond. Sci. Technol. 34(5), 055002 (2019). https://doi.org/10.1088/1361-6641/ab0995

    Article  CAS  Google Scholar 

  23. J. Srivastava, S. Nahas, S. Bhowmick, A. Gaur, Electronic structure and transport in amorphous metal oxide and amorphous metal oxynitride semiconductors. J. Appl. Phys. 126(2), 125702 (2019). https://doi.org/10.1063/1.5096042

    Article  CAS  Google Scholar 

  24. S.Y. Lee, Comprehensive review on amorphous oxide semiconductor thin film transistor. Trans. Electr. Electron. Mater. 21(3), 235–248 (2020). https://doi.org/10.1007/s42341-020-00197-w

    Article  Google Scholar 

  25. S.K. Pandey, S.K. Pandey, S. Verma, M. Gupta, V. Sathe, S. Mukherjee, Investigation of dual ion beam sputtered transparent conductive Ga-doped ZnO films. J. Mater. Sci. Mater. Electron. 24(12), 4919–4924 (2013). https://doi.org/10.1007/s10854-013-1498-2

    Article  CAS  Google Scholar 

  26. T. Amakali, L.S. Daniel, V. Uahengo, N.Y. Dzade, N.H. de Leeuw, Structural and optical properties of ZnO thin films prepared by molecular precursor and sol-gel methods. Curr. Comput.-Aided Drug Des. (2020). https://doi.org/10.3390/cryst10020132

    Article  Google Scholar 

  27. P. Dhamodharan, J. Chen, C. Manoharan, Fabrication of In doped ZnO thin films by spray pyrolysis as photoanode in DSSCs. Surf. Interfaces 23, 100965 (2021). https://doi.org/10.1016/j.surfin.2021.100965

    Article  CAS  Google Scholar 

  28. G.C. Xie et al., Effect of In-doping on the optical constants of ZnO thin films. Phys. Procedia 32, 651–657 (2012). https://doi.org/10.1016/j.phpro.2012.03.614

    Article  CAS  Google Scholar 

  29. M. Pirvahshi, The study of transparent conducting gallium doped ZnO thin films in order to use in solar cells. Int. J. Phys. Res. 6, 56 (2018). https://doi.org/10.14419/ijpr.v6i2.13805

    Article  Google Scholar 

  30. K.Y.R.A.R. Babar, P.R. Deshamuskh, R.J. Deokate, D. Haranath, C.H. Bhosale, Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. J. Phys. D: Appl. Phys. 41(13), 135404 (2008). https://doi.org/10.1088/0022-3727/41/13/135404

    Article  CAS  Google Scholar 

  31. M. Dominguez, J. Martínez, K. Monfil-Leyva, S. Soto, N. Carlos Ramírez, M. Moreno, Incorporation of ZnO nanoparticles on solution processed zinc oxide thin-film transistors. Trans. Electr. Electron. Mater. 9, 412–416 (2018). https://doi.org/10.1007/s42341-018-0063-3

    Article  Google Scholar 

  32. G. Adamopoulos et al., Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin-film transistors. Adv. Funct. Mater. 21(3), 525–531 (2011). https://doi.org/10.1002/adfm.201001089

    Article  CAS  Google Scholar 

  33. A. Marikutsa et al., Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO. Front. Mater. 6, 43 (2019). https://doi.org/10.3389/fmats.2019.00043

    Article  Google Scholar 

  34. G. Adamopoulos, A. Bashir, P.H. Wöbkenberg, D.D.C. Bradley, T.D. Anthopoulos, Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air. Appl. Phys. Lett. 95(13), 133507 (2009). https://doi.org/10.1063/1.3238466

    Article  CAS  Google Scholar 

  35. M.H. Nateq, R. Ceccato, Enhanced sol-gel route to obtain a highly transparent and conductive aluminum-doped zinc oxide thin film. Materials 12(11), 1744 (2019). https://doi.org/10.3390/ma12111744

    Article  CAS  Google Scholar 

  36. M. Dominguez, A. Orduña-Diaz, Fully solution-processed zinc oxide MIS capacitors by ultrasonic spray pyrolysis in air ambient. J. Appl. Res. Technol. 15, 278–282 (2017). https://doi.org/10.1016/j.jart.2017.01.015

    Article  Google Scholar 

  37. R. Sankar Ganesh et al., Influence of Al doping on the structural, morphological optical and gas sensing properties of ZnO nanorods. J. Alloys Compd. 698, 555–564 (2017). https://doi.org/10.1016/j.jallcom.2016.12.187

    Article  CAS  Google Scholar 

  38. T. Todorov et al., Solution-based synthesis of kesterite thin film semiconductors. J. Phys. Energy 2(1), 12003 (2020). https://doi.org/10.1088/2515-7655/ab3a81

    Article  CAS  Google Scholar 

  39. L. Wan et al., Effects of interfacial passivation on the electrical performance, stability, and contact properties of solution process based ZnO thin film transistors. Materials 11(9), 1761 (2018). https://doi.org/10.3390/ma11091761

    Article  CAS  Google Scholar 

  40. J.W. Hennek et al., Oxygen ‘Getter’ effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. J. Am. Chem. Soc. 135(29), 10729–10741 (2013). https://doi.org/10.1021/ja403586x

    Article  CAS  Google Scholar 

  41. B. Du Ahn, H.-J. Jeon, J. Sheng, J. Park, J.-S. Park, A review on the recent developments of solution processes for oxide thin film transistors. Semicond. Sci. Technol. 30(6), 64001 (2015). https://doi.org/10.1088/0268-1242/30/6/064001

    Article  CAS  Google Scholar 

  42. Z. Zhou, H. Zhang, J. Liu, W. Huang, Flexible electronics from intrinsically soft materials. Giant 6, 100051 (2021). https://doi.org/10.1016/j.giant.2021.100051

    Article  Google Scholar 

  43. M.A. Dominguez et al., Impact of active layer thickness in thin-film transistors based on Zinc Oxide by ultrasonic spray pyrolysis. Solid. State. Electron. 109, 33–36 (2015). https://doi.org/10.1016/j.sse.2015.03.012

    Article  CAS  Google Scholar 

  44. M. Dominguez, F. Flores Gracia, J. Martinez, A. Orduña-Diaz, Effects of low-temperature annealing on electrical properties of Thin-film Transistors based on Zinc Oxide films deposited by ultrasonic spray pyrolysis: impact of annealing time. Thin Solid Films 615, 243–246 (2016). https://doi.org/10.1016/j.tsf.2016.07.036

    Article  CAS  Google Scholar 

  45. M.A. Dominguez, J.A. Luna-Lopez, S. Ceron, Low-temperature ultrasonic spray deposited aluminum doped zinc oxide film and its application in flexible Metal-Insulator-Semiconductor diodes. Thin Solid Films 645, 278–281 (2018). https://doi.org/10.1016/j.tsf.2017.11.006

    Article  CAS  Google Scholar 

  46. S. Edinger et al., Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions. J. Mater. Sci. 52(14), 8591–8602 (2017). https://doi.org/10.1007/s10853-017-1084-8

    Article  CAS  Google Scholar 

  47. H. Zhang et al., Effect of surface carbon contamination on the chemical states of N-doped ZnO thin films. Appl. Phys. A 124(2), 147 (2018). https://doi.org/10.1007/s00339-018-1565-x

    Article  CAS  Google Scholar 

  48. S. Ceron, A. Orduña-Diaz, M.A. Dominguez, Influence of inductive effect in organic residuals content in IZO thin films and the performance on the behavior of MIS capacitors on plastic. Eng. Proc. (2021). https://doi.org/10.3390/Micromachines2021-09551

    Article  Google Scholar 

  49. J.H. Lim et al., Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods. Sci. Rep. 7(1), 41992 (2017). https://doi.org/10.1038/srep41992

    Article  CAS  Google Scholar 

  50. N. Al Dahoudi, A. AlKahlout, S. Heusing, P. Herbeck-Engel, R. Karos, P. Oliveira, Indium doped zinc oxide nanopowders for transparent conducting coatings on glass substrates. J. Sol Gel Sci. Technol. 67(3), 556–564 (2013). https://doi.org/10.1007/s10971-013-3114-6

    Article  CAS  Google Scholar 

  51. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram. Int. 42, 10066–10070 (2016). https://doi.org/10.1016/j.ceramint.2016.03.110

    Article  CAS  Google Scholar 

  52. S. Edinger et al., Comparison of chemical bath-deposited ZnO films doped with Al. Ga and In. J. Mater. Sci. 52(16), 9410–9423 (2017). https://doi.org/10.1007/s10853-017-1104-8

    Article  CAS  Google Scholar 

  53. J.L. Gonzalez-Vidal et al., CO sensitivity of undoped-ZnO, Cr-ZnO and Cu-ZnO thin films obtained by spray pyrolysis. Rev. Mex. Fis. 52(2), 6–10 (2006). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2006000800003&lng=es&tlng=en

  54. L. Znaidi, G.J.A.A.S. Illia, R. Le Guennic, C. Sanchez, A. Kanaev, Elaboration of ZnO thin films with preferential orientation by a soft chemistry route. J. Sol-Gel Sci. Technol. 26(1), 817–821 (2003). https://doi.org/10.1023/A:1020795515478

    Article  CAS  Google Scholar 

  55. K.M. Neyman, N. Rösch, Bonding and vibrations of CO molecules adsorbed at transition metal impurity sites on the MgO (001) surface. A density functional model cluster study. Chem. Phys. 177(2), 561–570 (1993). https://doi.org/10.1016/0301-0104(93)80033-6

    Article  CAS  Google Scholar 

  56. M. Hjiri et al., Effect of indium doping on ZnO based-gas sensor for CO. Mater. Sci. Semicond. Process. 27, 319–325 (2014). https://doi.org/10.1016/j.mssp.2014.07.009

    Article  CAS  Google Scholar 

  57. C. Sanchez-Perez, S.C. Dixon, J.A. Darr, I.P. Parkin, C.J. Carmalt, Aerosol-assisted route to low-E transparent conductive gallium-doped zinc oxide coatings from pre-organized and halogen-free precursor. Chem. Sci. 11(19), 4980–4990 (2020). https://doi.org/10.1039/D0SC00502A

    Article  CAS  Google Scholar 

  58. S. Alamdari, M.S. Ghamsari, M.J. Tafreshi, Optimization of Gallium concentration to improve the performance of ZnO nanopowders for nanophotonic applications. Ceram. Int. 46(4), 4484–4492 (2020). https://doi.org/10.1016/j.ceramint.2019.10.175

    Article  CAS  Google Scholar 

  59. I. Winer, G.E. Shter, M. Mann-Lahav, G.S. Grader, Effect of solvents and stabilizers on sol–gel deposition of Ga-doped zinc oxide TCO films. J. Mater. Res. 26(10), 1309–1315 (2011). https://doi.org/10.1557/jmr.2011.69

    Article  CAS  Google Scholar 

  60. P.K. Nayak et al., Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes. J. Phys. D. Appl. Phys. 42(3), 35102 (2008). https://doi.org/10.1088/0022-3727/42/3/035102

    Article  CAS  Google Scholar 

  61. J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, S.-I. Kim, Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90(26), 262106 (2007). https://doi.org/10.1063/1.2753107

    Article  CAS  Google Scholar 

  62. V. Garg et al., Investigation of dual-ion beam sputter-instigated plasmon generation in TCOs: a case study of GZO. ACS Appl. Mater. Interfaces 10(6), 5464–5474 (2018). https://doi.org/10.1021/acsami.7b15103

    Article  CAS  Google Scholar 

  63. J.Y.Y. Loh, M. Shayegannia, N.P. Kherani, Enhancing optical phonon energies and persistent yield production of CO via substitutional doping in indium oxide. Appl. Catal. B Environ. 282, 119555 (2021). https://doi.org/10.1016/j.apcatb.2020.119555

    Article  CAS  Google Scholar 

  64. S. Zhan, J.A. De Gracia Triviño, M.S.G. Ahlquist, The carboxylate ligand as an oxide relay in catalytic water oxidation. J. Am. Chem. Soc. 141(26), 10247–10252 (2019). https://doi.org/10.1021/jacs.9b02585

    Article  CAS  Google Scholar 

  65. M. Benwadih, J.A. Chroboczek, G. Ghibaudo, R. Coppard, D. Vuillaume, Impact of dopant species on the interfacial trap density and mobility in amorphous In-X-Zn-O solution-processed thin-film transistors. J. Appl. Phys. 115(21), 214501 (2014). https://doi.org/10.1063/1.4880163

    Article  CAS  Google Scholar 

  66. A. Artesani, Zinc oxide instability in drying oil paint. Mater. Chem. Phys. 255, 123640 (2020). https://doi.org/10.1016/j.matchemphys.2020.123640

    Article  CAS  Google Scholar 

  67. K. Takenaka, M. Endo, G. Uchida, A. Ebe, Y. Setsuhara, Influence of deposition condition on electrical properties of a-IGZO films deposited by plasma-enhanced reactive sputtering. J. Alloys Compd. 772, 642–649 (2019). https://doi.org/10.1016/j.jallcom.2018.09.143

    Article  CAS  Google Scholar 

  68. C. Peng, S. Yang, C. Pan, X. Li, J. Zhang, Effect of two-step annealing on high stability of a-IGZO thin-film transistor. IEEE Trans. Electron Devices 67(10), 4262–4268 (2020). https://doi.org/10.1109/TED.2020.3017718

    Article  CAS  Google Scholar 

  69. D.K. Schroder, Semiconductor material and device characterization (John Wiley Sons, 2006), p. 56

  70. J. Lin et al., An investigation of capacitance-voltage hysteresis in metal/high-k/In0.53Ga0.47As metal-oxide-semiconductor capacitors. J. Appl. Phys. 114(14), 144105 (2013). https://doi.org/10.1063/1.4824066

    Article  CAS  Google Scholar 

  71. K. Saranti, S. Alotaibi, S. Paul, A new approach for two-terminal electronic memory devices—Storing information on silicon nanowires. Sci. Rep. 6(1), 27506 (2016). https://doi.org/10.1038/srep27506

    Article  CAS  Google Scholar 

  72. D.K. Hwang, M.S. Oh, J.M. Hwang, J.H. Kim, S. Im, Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics. Appl. Phys. Lett. 92(1), 13304 (2008). https://doi.org/10.1063/1.2830329

    Article  CAS  Google Scholar 

  73. J.H. Park, J.Y. Oh, H.K. Baik, T.I. Lee, Lithium ion assisted hydration of metal ions in non-aqueous sol–gel inks for high performance metal oxide thin-film transistors. J. Mater. Chem. C 3(24), 6276–6283 (2015). https://doi.org/10.1039/C5TC00341E

    Article  CAS  Google Scholar 

  74. K. Kandpal, N. Gupta, J. Singh, C. Shekhar, On the threshold voltage and performance of ZnO-based thin-film transistors with a ZrO2 gate dielectric. J. Electron. Mater. 49(5), 3156–3164 (2020). https://doi.org/10.1007/s11664-020-08055-4

    Article  CAS  Google Scholar 

  75. A. Zeumault, V. Subramanian, Use of high-k encapsulation to improve mobility in trap-limited metal-oxide semiconductors. Phys. status solidi 254(10), 1700124 (2017). https://doi.org/10.1002/pssb.201700124

    Article  CAS  Google Scholar 

  76. Í. Bretos, R. Jiménez, J. Ricote, M.L. Calzada, Low-temperature solution approaches for the potential integration of ferroelectric oxide films in flexible electronics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(10), 1967–1979 (2020). https://doi.org/10.1109/TUFFC.2020.2995287

    Article  Google Scholar 

  77. Y.-H. Zhou, J. Li, D.-Y. Zhong, X.-F. Li, J.-H. Zhang, Enhanced stability of Sr-doped aqueous In2O3 thin-film transistors under bias/illumination/thermal stress. IEEE Trans. Electron Devices 66(3), 1308–1313 (2019). https://doi.org/10.1109/TED.2019.2893479

    Article  CAS  Google Scholar 

  78. C.-Y. Zhao et al., Effect of La addition on the electrical characteristics and stability of solution-processed laino thin-film transistors with high-k ZrO2 gate insulator. IEEE Trans. Electron Devices 65(2), 526–532 (2018). https://doi.org/10.1109/TED.2017.2781725

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Fondo Sectorial de Investigación para la Educación CONACyT-SEP Ciencia Basica [grant number A1-S-7888] and by VIEP-BUAP [grant number DJMA-EXC17-G]. S. Ceron and O. Obregon thank CONACyT for the scholarships awarded. M. Dominguez thanks Filmtronics Inc. PA, USA for the supplies provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Dominguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceron, S., Obregon, O., Orduña-Diaz, A. et al. Study of the Influence of Ga and In Doping on Organic Residuals in Solution-Processed IGZO Thin Films Deposited at Low-Temperature. Trans. Electr. Electron. Mater. 23, 489–498 (2022). https://doi.org/10.1007/s42341-021-00376-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00376-3

Keywords

Navigation