Skip to main content
Log in

Linearity Analysis of MoTe2-FET based Single Transistor AND Gate Using Non-Equilibrium Green’s Function

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Continuous failure of Metal oxide semiconductor field-effect transistors due to short channel effects has motivated researchers to find novel devices like tunnel field-effect transistors and junctionless transistors. The impractical nature of the analysed devices showed that the metal oxide semiconductor field-effect transistor is still the backbone of the industry. In this manuscript, a single transistor-based AND gate is analysed. For designing the gate, a split-gate metal oxide semiconductor field-effect-transistor is used. Due to the physical limitations of Silicon, MoTe2 is considered as the substrate material. To consider all the quantum effects, the Non-equilibrium Green’s function is used to solve the device behavior. The split-gate acts as the input for the designed AND logic structure. For state ‘01’ and ‘10’, different device properties are studied and it is shown that proper conduction does not take place when either of the gates is in OFF-state. For state ‘11’, the analysed device operates as conventional MOSFET, and the drain current–gate voltage characteristics are studied. To investigate the device thoroughly, the effect of parameter variation on device characteristics is examined. The device behavior as an AND gate is confirmed by checking the linearity parameters. It is found that the device can be used as an AND gate with low noise and power dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Veeraraghavan, J.G. Fossum, Short-channel effects in SOI MOSFETs. IEEE Trans. Electron Devices 36(3), 522–528 (1989). https://doi.org/10.1109/16.19963

    Article  Google Scholar 

  2. S.-H. Oh, D. Monroe, J.M. Hergenrother, Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Device Lett. 21(9), 445–447 (2000). https://doi.org/10.1109/55.863106

    Article  Google Scholar 

  3. A.S. Verhulst, W.G. Vandenberghe, K. Maex, S. De Gendt, M.M. Heyns, G. Groeseneken, Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29(12), 1398–1401 (2008). https://doi.org/10.1109/LED.2008.2007599

    Article  CAS  Google Scholar 

  4. S. Anand, R.K. Sarin, Analog and RF performance of doping-less tunnel FETs with Si055Ge045. J. Comput. Electron. 15(3), 850–856 (2016). https://doi.org/10.1007/s10825-016-0859-5

    Article  CAS  Google Scholar 

  5. N. Kumar, A. Raman, Design and analog performance analysis of charge-plasma based cylindrical GAA silicon nanowire tunnel field effect transistor. SILICON (2019). https://doi.org/10.1007/s12633-019-00355-7

    Article  Google Scholar 

  6. P. Kumar, M. Gupta, K. Singh, Performance evaluation of transition metal dichalcogenides based steep subthreshold slope tunnel field effect transistor. SILICON (2019). https://doi.org/10.1007/s12633-019-00285-4

    Article  Google Scholar 

  7. N. Kumar, A. Raman, Low voltage charge-plasma based dopingless Tunnel Field Effect Transistor: analysis and optimization. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04666-y

    Article  Google Scholar 

  8. S.M. Turkane, A.K. Kureshi, Review of tunnel field effect transistor (TFET). Int. J. Appl. Eng. Res. 11(7), 4922–4929 (2016)

    Google Scholar 

  9. B.C. Paz, F. Ávila-Herrera, A. Cerdeira, M.A. Pavanello, Double-gate junctionless transistor model including short-channel effects. Semicond. Sci. Technol. (2015). https://doi.org/10.1088/0268-1242/30/5/055011

    Article  Google Scholar 

  10. A.A. Yanik, G. Klimeck, S. Datta, Quantum transport with spin dephasing: A nonequlibrium Green’s function approach. Phys. Rev. B (2007). https://doi.org/10.1103/PhysRevB.76.045213

    Article  Google Scholar 

  11. J.-S. Wang, J. Wang, N. Zeng, Nonequilibrium Green’s function approach to mesoscopic thermal transport. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.033408

    Article  Google Scholar 

  12. N.B. Abdallah, A. Unterreiter, On the stationary quantum drift-diffusion model. Zeitschrift für angewandte Mathematik und Physik ZAMP 49(2), 251–275 (1998). https://doi.org/10.1007/s000330050218

    Article  Google Scholar 

  13. K.E. Whitener Jr., P.E. Sheehan, Graphene synthesis. Diamond Relat. Mater. 46, 25–34 (2014). https://doi.org/10.1016/j.diamond.2014.04.006

    Article  CAS  Google Scholar 

  14. S. Das, M. Kim, J.-W. Lee, W. Choi, Synthesis, properties, and applications of 2-D materials: A comprehensive review. Crit. Rev. Solid State Mater. Sci. 39(4), 231–252 (2014). https://doi.org/10.1080/10408436.2013.836075

    Article  CAS  Google Scholar 

  15. P. Kumar, M. Gupta, K. Singh, N. Kumar, Design and Investigation of Split-Gate MoTe2-Based FET as Single Transistor AND Gate Using Nonequilibrium Green’s Function. IEEE Trans. Electron Devices 67(11), 5221–5228 (2020)

    Article  CAS  Google Scholar 

  16. ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA, 2012. https://silvaco.com/tcad/

  17. T. Rakshit, G.C. Liang, A.W. Ghosh, M.C. Hersam, S. Datta, Molecules on silicon: Self-consistent first-principles theory and calibration to experiments. Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.72.125305

    Article  Google Scholar 

  18. R. Chaujar, R. Kaur, M. Saxena, M. Gupta, R.S. Gupta, TCAD assessment of Gate Electrode Workfunction Engineered Recessed Channel (GEWE-RC) MOSFET and its multi-layereded gate architecture, Part II: Analog and large signal performance evaluation. Superlattices Microstruct. 46(4), 645–655 (2009). https://doi.org/10.1109/TED.2008.2003085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Gupta, M., Singh, K. et al. Linearity Analysis of MoTe2-FET based Single Transistor AND Gate Using Non-Equilibrium Green’s Function. Trans. Electr. Electron. Mater. 23, 164–170 (2022). https://doi.org/10.1007/s42341-021-00336-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00336-x

Keywords

Navigation