Skip to main content
Log in

Structural, Optical and Electronic Properties of Novel (PVA–MgO)/SiC Nanocomposites Films for Humidity Sensors

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The polyvinyl alcohol (PVA) and magnesium oxide (MgO) nanocomposites and (PVA–MgO) nanocomposites doped by Silicon carbide (SiC) nanoparticles have been fabricated with different concentrations of Silicon carbide and (PVA–MgO) nanocomposites. Both experimental and theoretical studies on structural and optical properties of novel (PVA–MgO–SiC) nanocomposites for humidity sensors were examined for first time with low cost, flexible and high sensitivity. The (PVA–MgO–SiC) nanocomposites were intended with various concentrations of Silicon carbide nanoparticles. The experimental results of optical properties for (PVA–MgO–SiC) nanocomposites indicated that the absorbance, absorption coefficient, extinction coefficient, refractive index, imaginary and real dielectric constants and optical conductivity of (PVA–MgO) nanocomposites increase with an increase in Silicon carbide nanoparticles concentrations. The absorbance increases from 0.432 to 2.55 a.u while the transmittance decreases from 0.779 to 0.230 a.u. The energy gap decreases from 4.4 to 2.1 eV. The energy gap theoretically decreases from 7.07 to 3.04 eV. The experimental results of novel (PVA–MgO–SiC) nanocomposites applications showed that (PVA–MgO–SiC) nanocomposites have high sensitivity for relative humidity. The results obtained were compared with theoretic results obtained by using Gaussian 09 program and Gaussian view 5.0.8 program and using density functional theory (DFT) at B3LYP level with 6-31G basis set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Hashim, A. Hadi, Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application. Sens. Lett. 15(10), 858–861 (2017)

    Article  Google Scholar 

  2. S. Ju et al., Dielectric properties of nanosilica/low-density polyethylene composites: the surface chemistry of nanoparticles and deep traps induced by nanoparticles. Exp. Polym. Lett. 8(9), 682 (2014)

    Article  Google Scholar 

  3. I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA–PEG–PVP–ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. 21(2), 444–453 (2017)

    Article  Google Scholar 

  4. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)

    Article  Google Scholar 

  5. D. Ham, J. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4), 873–899 (2009)

    Article  Google Scholar 

  6. J.S. Lee, T.H. Hyun, Metal carbides, in Encyclopedia of Catalysis, 1st edn., ed. by I.T. Horvath (Wiley, New York, 2003)

    Google Scholar 

  7. S. Gandhi, P. Abiramipriya, N. Pooja, J.J.L. Jeyakumari, A.Y. Arasi, V. Dhanalakshmi, R. Anbarasan, Synthesis and characterizations of nano sized MgO and its nano composite with poly(vinyl alcohol). J. Non-Cryst. Solids 357(1), 181–185 (2011)

    Article  Google Scholar 

  8. K. Karthikeyan et al., Thermal properties and morphology of MgO–PVA nanocomposite film. J. Nanostruct. Polym. Nanocompos. 5(4), 83–88 (2009)

    Google Scholar 

  9. Z.-X. Tang, B.-F. Lv, MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3), 591–601 (2014)

    Article  Google Scholar 

  10. F.L. Rashid et al., Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. J. Pharm. Phytopharm. Res. 8(1), 46–56 (2018)

    Google Scholar 

  11. D.K.M. Al-Nasrawy et al., The effect of SiC–particles–reinforced MgO composites. J. Kufa-Phys. 3(1), 75–81 (2011)

    Google Scholar 

  12. D.C. Young, A Practical Guide for Applying Techniques to Real-World Problems (2001)

  13. Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  14. P. Atkins, J. De Paula, Physical Chemistry for the Life Sciences (Oxford University Press, Oxford, 2011)

    Google Scholar 

  15. C.C. DeMerlis, D.R. Schoneker, Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol. 41(3), 319–326 (2003)

    Article  Google Scholar 

  16. I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA–PEG–PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397 (2017)

    Article  Google Scholar 

  17. A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. 62(12), 1044 (2017)

    Article  Google Scholar 

  18. A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018)

    Article  Google Scholar 

  19. A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym. Mater. 28(4), 1394–1401 (2018)

    Article  Google Scholar 

  20. A.P. Indolia, M.S. Gaur, Optical properties of solution grown PVDF ZnO nanocomposite thin films. J. Polym. Res. 20(1), 43 (2013)

    Article  Google Scholar 

  21. P. Phukan, D. Saikia, Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. Int. J. Photoenergy 2013, 728280 (2013)

    Article  Google Scholar 

  22. S. Salman, N. Bakr, M.H. Mahmood, Preparation and study of some optical properties of (PVA-Ni (CH3COO)2) composites. Int. J. Curr. Res. 6(11), 9638–9643 (2014)

    Google Scholar 

  23. M.R. Islam, J. Podder, Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 44(3), 286–292 (2009)

    Article  Google Scholar 

  24. C.J. Mathai et al., Effect of iodine doping on the bandgap of plasma polymerized aniline thin films. J. Phys. D Appl. Phys. 35(17), 2206 (2002)

    Article  Google Scholar 

  25. E. Kavitha, N. Sundaraganesan, S. Sebastian, Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method (2010)‏

  26. Q. Fan et al., Mechanical and electronic properties of Ca1−xMgxO alloys. Mater. Sci. Semicond. Process. 40, 676–684 (2015)

    Article  Google Scholar 

  27. A.M. El Sayed, W.M. Morsi, α-Fe2O3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J. Mater. Sci. 49(15), 5378–5387 (2014)

    Article  Google Scholar 

  28. B. Singh Rathore et al., Optical and dielectric properties of 55 MeV carbon beam-irradiated polycarbonate films. Radiat. Effects Defects Solids 167(2), 131–140 (2012)

    Article  Google Scholar 

  29. M.A.M. Khan, M. Zulfequar, M. Husain, Optical investigation of a-Se100−xBix alloys. Opt. Mater. 22(1), 21–29 (2003)

    Article  Google Scholar 

  30. G. Attia, M.F.H. Abd El-Kader, Structural, optical and thermal characterization of PVA/2HEC polyblend films. Int. J. Electrochem. Sci. 8, 5672–5687 (2013)

    Google Scholar 

  31. A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 170 (2018)

    Article  Google Scholar 

  32. A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62(11), 978 (2017)

    Article  Google Scholar 

  33. A. Hashim, A. Jassim, Novel of (PVA-ST-PbO2) Bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. 15(12), 1003 (2017)

    Article  Google Scholar 

  34. N.G. Imam, M.B. Mohamed, Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra. J. Mol. Struct. 1105, 80–86 (2016)

    Article  Google Scholar 

  35. A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci. Mater. Electron. 29(12), 10369–10394 (2018)

    Article  Google Scholar 

  36. A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inform. 7(1), 28 (2018)

    Google Scholar 

  37. M. Joshi, R.P. Singh, Cross linking polymers (PVA & PEG) with TiO2 nanoparticles for humidity sensing. Sens. Transducers 110(11), 105 (2009)

    Google Scholar 

  38. R. Srivastava, Effect of poly ethylene glycolon moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)

    Google Scholar 

  39. A. Hind, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00100-2

    Google Scholar 

  40. A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-0081-1

    Google Scholar 

  41. N.A. Elmarzugi et al., Spectroscopic characterization of PEG-DNA biocomplexes by FTIR. J. Appl. Pharm. Sci. 4(8), 6 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors thank the University of Babylon–Iraq (College of Education for Pure Sciences, Department of Physics and College of Science, Department of Physics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H., Abduljalil, H.M. & Hashim, A. Structural, Optical and Electronic Properties of Novel (PVA–MgO)/SiC Nanocomposites Films for Humidity Sensors. Trans. Electr. Electron. Mater. 20, 218–232 (2019). https://doi.org/10.1007/s42341-019-00111-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00111-z

Keywords

Navigation