Skip to main content
Log in

Knowledge and Risk–Benefit Perception as Predictors of Preservice Science Teachers’ Self-Efficacy Beliefs for Socioscientific Issues–Based Instruction

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This paper aims to explore the direct relationships between preservice science teachers’ knowledge and risk–benefit perceptions, and self-efficacy beliefs for socioscientific issues–based instruction in the context of genetically modified foods. Data were collected from 1077 junior and senior preservice science teachers and analysed by structural model analysis. Three instruments were used to collect data: Self-Efficacy Beliefs for Genetically Modified Foods–Based Instruction Instrument, Genetically Modified Foods Risk and Benefit Perception Scale, and Genetically Modified Foods Knowledge Scale. Findings of the study showed that preservice science teachers’ self-efficacy beliefs for teaching socioscientific issues–based instruction in the context of genetically modified foods are significantly correlated to their genetically modified foods knowledge and risk perception. Data analysis also showed that benefit perception regarding the socioscientific issue is not correlated to preservice science teachers’ self-efficacy beliefs for teaching in the context of genetically modified foods. Moreover, it was revealed that preservice science teachers’ genetically modified foods knowledge is significantly correlated to their genetically modified foods benefit perception but not to their risk perception. Findings of the study were discussed in light of teacher self-efficacy beliefs literature and implications were provided.

Résumé

Cet article cherche à explorer les relations directes qui peuvent exister entre les connaissances et les perceptions des risques et avantages des enseignants de sciences en formation initiale et leur sentiment d’efficacité personnelle à l’égard de l’enseignement fondé sur des questions socioscientifiques dans le contexte des aliments génétiquement modifiés. Les données ont été recueillies auprès de 1 077 enseignants de sciences en formation initiale débutants et avancés (dans leur programme) puis elles furent analysées par modèle structurel. On a utilisé les trois instruments suivants pour recueillir les données: l’instrument mesurant les convictions d’auto-efficacité à l’égard de l’enseignement fondé sur les aliments génétiquement modifiés, l’échelle de perception des risques et avantages des aliments génétiquement modifiés et l’échelle de connaissances des aliments génétiquement modifiés. Les résultats de l’étude indiquent que les convictions d’efficacité personnelle des enseignants de sciences en formation initiale en ce qui concerne l’enseignement des enjeux socioscientifiques dans le contexte des aliments génétiquement modifiés sont nettement corrélées à leur degré de connaissances des aliments génétiquement modifiés et à leur perception des risques associés. L’analyse des données a également montré que la perception des avantages en ce qui a trait aux questions socioscientifiques n’est pas corrélée aux convictions d’auto-efficacité des enseignants de sciences en formation initiale à l’égard de l’enseignement dans le contexte des aliments génétiquement modifiés. En outre, on a découvert que la connaissance qu’ont les enseignants de sciences en formation initiale des aliments génétiquement modifiés est fortement corrélée à leur perception des avantages associés aux aliments génétiquement modifiés, mais pas à leur perception des risques associés. À la lumière de la documentation portant sur les convictions d’efficacité personnelle des enseignants, on a commenté les conclusions de l’étude puis fait des remarques sur les implications de ces constatations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aksit, O., McNeal, K. S., Gold, A. U., Libarkin, J. C., & Harris, S. (2018). The influence of instruction, prior knowledge, and values on climate change risk perception among undergraduates. Journal of Research in Science Teaching, 55(4), 550–572.

    Article  Google Scholar 

  • Asghar, A., Wiles, J. R., & Alters, B. (2007). Canadian preservice elementary teachers’ conceptions of biological evolution and evolution education. McGill Journal of Education, 42(2),189–209.

    Google Scholar 

  • Baltaci, S., & Kilinc, A. (2014). Preservice science teachers’ epistemologies and efficacy regarding a socioscientific issue: Is there a relationship? Paper presented at the Annual Meeting of The National Association for Research in Science Teaching (NARST), Pittsburgh, PA, USA.

  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.

    Article  Google Scholar 

  • Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.

    Google Scholar 

  • Bleicher, R. E., & Lindgren, J. (2005). Success in science learning and preservice science teaching self-efficacy. Journal of Science Teacher Education, 16(3), 205–225. https://doi.org/10.1007/s10972-005-4861-1

    Article  Google Scholar 

  • Bostan, A., & Gün, S. (2013). Türkiye’de genetiği değiştirilmiş gıda ve yem konusunda mevzuat uygulamaları ve denetimler [The implementation of the legislation and inspections on genetically modified food and feed in Turkey]. Tekirdağ Ziraat Fakültesi Dergisi, 10(1), 90–98.

    Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. National Academy.

  • Bredahl, L. (2001). Determinants of consumer attitudes and purchase intentions with regard to genetically modified foods-Results of a crossnational survey. Journal of Consumer Policy, 24(1), 23–61.

    Article  Google Scholar 

  • Chen, L., & Xiao, S. (2021). Perceptions, challenges and coping strategies of science teachers in teaching socioscientific issues: A systematic review. Educational Research Review, 32, 100377. https://doi.org/10.1016/j.edurev.2020.100377

    Article  Google Scholar 

  • Christensen, C. (2009). Risk and school science education. Studies in Science Education, 45(2), 205-223. https://doi.org/10.1080/03057260903142293

    Article  Google Scholar 

  • Christensen, C., & Fensham, P. J. (2012). Risk, uncertainty and complexity in science education. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second handbook of research in science education (pp. 751–769). Springer.

    Chapter  Google Scholar 

  • Cori, L., Bianchi, F., Cadum, E., & Anthonj, C. (2020). Risk perception and COVID-19. International Journal of Environmental Research and Public Health, 17(9), 3114.

    Article  Google Scholar 

  • Cross, R. T., & Price, R. F. (1996). Science teachers’ social conscience and the role of controversial issues in the teaching of science. Journal of Research in Science Teaching, 33(3), 319–333.

    Article  Google Scholar 

  • Cuite, C. L., Aquino, H. L., & Hallman, W. K. (2005). An empirical investigation of the role of knowledge in public opinion about GM food. International Journal of Biotechnology, 7(1-3), 178–194.

    Article  Google Scholar 

  • Day, S. P., & Bryce, T. G. (2011). Does the discussion of socioscientific issues require a paradigm shift in science teachers’ thinking?. International Journal of Science Education, 33(12), 1675–1702.

    Article  Google Scholar 

  • Demir, A., & Namdar, B. (2019). The effect of modeling activities on grade 5 students’ informal reasoning about a real-life issue. Research in Science Education, 51, 429–442. https://doi.org/10.1007/s11165-019-09896-8

  • Ekstam, U., Korhonen, J., Linnanmäki, K., & Aunio, P. (2017). Special education pre-service teachers’ interest, subject knowledge, and teacher efficacy beliefs in mathematics. Teaching and Teacher Education, 63, 338–345.

    Article  Google Scholar 

  • Es, H., & Yenilmez Turkoglu, A. (2021). Using Q methodology to explore science teachers’ socioscientific decision-making. International Journal of Research in Education and Science, 7(3), 659–680. https://doi.org/10.46328/ijres.1479

  • European Commission. (2006). Europeans and biotechnology in 2005: Patterns and trends. (Research Report No. 64.3). Retrieved June, 2015, from http://ec.europa.eu/research/press/2006/pdf/pr1906_eb_64_3_final_reportmay2006_en.pdf

  • Fensham, P. (2012). Preparing citizens for a complex world: The grand challenge of teaching socio-scientific issues in science education. In A. Zeyer & R. Kyburz-Graber (Eds.), Science/environment/health: Towards a renewed pedagogy for science education (pp. 7–29). Springer

    Google Scholar 

  • Frewer, L. J. (1997). Consumer acceptance of genetically modified food. Presentation held at the Workshop on “Expert Perceptions of Gene Technology,” University of Lund, Sweden.

  • Frewer, L. J., Howard, C., & Shepherd, R. (1997). Public concerns in the United Kingdom about general and specific applications of genetic engineering: Risk, benefit, and ethics. Science, Technology, & Human Values, 22, 98–124.

    Article  Google Scholar 

  • Friedrichsen, P., Sadler, T., Graham, K., & Brown, P. (2016). Design of a socio-scientific issue curriculum unit: Antibiotic resistance, natural selection, and modeling. International Journal of Designs for Learning, 7(1), 1–18.

    Article  Google Scholar 

  • Gardner, G. E., & Jones, M. G. (2011). Science instructors’ perceptions of the risks of biotechnology: Implications for science education. Research in Science Education, 41(5), 711–738. https://doi.org/10.1007/s11165-010-9187-0

    Article  Google Scholar 

  • Guskey, T. R., & Passaro, P. D. (1994). Teacher efficacy: A study of construct dimensions. American Educational Research Journal, 31(3), 627–643.

    Article  Google Scholar 

  • Hancock, T. S., Friedrichsen, P. J., Kinslow, A. T., & Sadler, T. D. (2019). Selecting socio-scientific issues for teaching: A grounded theory study of how science teachers collaboratively design SSI-based curricula. Science & Education, 28(6), 639–667.

    Article  Google Scholar 

  • Howard, S. K. (2011). Affect and acceptability: Exploring teachers’ technology-related risk perceptions. Educational Media International, 48(4), 261–272.

    Article  Google Scholar 

  • Kazempour, M. (2009). Impact of inquiry-based professional development on core conceptions and teaching practices: A case study. Science Educator, 18(2), 56–68.

    Google Scholar 

  • Kara, Y. (2012). Pre-service biology teachers’ perceptions on the instruction of socioscientific issues in the curriculum. European Journal of Teacher Education, 35(1), 111–129. https://doi.org/10.1080/02619768.2011.633999

    Article  Google Scholar 

  • Kilinc, A., Kartal, T., Eroglu, B., Demiral, U., Afacan,O., Polat, D., Demirci-Guler, M. P., & Gorgulu, O. (2013). Preservice science teachers’ efficacy regarding a socioscientific issue: A belief system approach. Research in Science Education, 43(6), 2455–2475. https://doi.org/10.1007/s11165-013-9368-8

    Article  Google Scholar 

  • Kinskey, M., & Callahan, B. E. (2021). The influences of socioscientific issues on general science teaching self-efficacy. Research in Science Education, 1–15.

  • Kinskey, M., & Zeidler, D. (2021). Elementary preservice teachers’ challenges in designing and implementing socioscientific issues-based lessons. Journal of Science Teacher Education, 32(3), 350–372.

    Article  Google Scholar 

  • Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). Guilford Press.

  • Kurtz, C. F., & Snowden, D. J. (2003). The new dynamics of strategy: Sense-making in a complex and complicated world. IBM Systems Journal, 42(3), 462–483.

  • Lee, H., Abd‐El‐Khalick, F., & Choi, K. (2006). Korean science teachers’ perceptions of the introduction of socio‐scientific issues into the science curriculum. Canadian Journal of Science, Mathematics and Technology Education, 6(2), 97–117.

    Article  Google Scholar 

  • Lee, H., & Witz, K. G. (2009). Science teachers' inspiration for teaching socio‐scientific issues: Disconnection with reform efforts. International Journal of Science Education, 31(7), 931–960. https://doi.org/10.1080/09500690801898903

    Article  Google Scholar 

  • Levinson, R., Kent, P., Pratt, D., Kapadia, R., & Yogui, C. (2011). Risk-based decision making in a scientific issue: A study of teachers discussing a dilemma through a microworld. Science Education, 96(2), 212–233. https://doi.org/10.1002/sce.21003

    Article  Google Scholar 

  • McPhetres, J., Rutjens, B. T., Weinstein, N., & Brisson, J. A. (2019). Modifying attitudes about modified foods: Increased knowledge leads to more positive attitudes. Journal of Environmental Psychology, 64, 21–29.

    Article  Google Scholar 

  • Menon, D., & Sadler, T. D. (2016). Preservice elementary teachers’ science self-efficacy beliefs and science content knowledge. Journal of Science Teacher Education, 27(6), 649–673.

    Article  Google Scholar 

  • Ministry of National Education. (2018). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3–8) [Elementary and middle school science curriculum for grades 3–8]. http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325. Ankara-Turkey.

  • Monge-Rodríguez, F. S., Jiang, H., Zhang, L., Alvarado-Yepez, A., Cardona-Rivero, A., Huaman-Chulluncuy, E., & Torres-Mejía, A. (2021). Psychological factors affecting risk perception of COVID-19: Evidence from Peru and China. International Journal of Environmental Research and Public Health, 18(12), 6513.

    Article  Google Scholar 

  • Newton, K. J., Leonard, J., Evans, B. R., & Eastburn, J. A. (2012). Preservice elementary teachers’ mathematics content knowledge and teacher efficacy. School Science and Mathematics, 112(5), 289–299. https://doi.org/10.1111/j.1949-8594.2012.00145.x

    Article  Google Scholar 

  • Nielsen, J. A. (2009). Structuring students’ critical discussions through processes of decision making on socio-scientific controversies. Revista de Estudos Universitários, 35(2), 139–165.

    Google Scholar 

  • Owens, D. C., Sadler, T. D., & Friedrichsen, P. (2021). Teaching practices for enactment of socio-scientific issues instruction: An instrumental case study of an experienced biology teacher. Research in Science Education, 51(2), 375–398.

    Article  Google Scholar 

  • Ozturk, N. (2016). Preservice science teachers’ SSI teaching self-efficacy beliefs and their relations to knowledge, risk and benefit perceptions, and personal epistemological beliefs [Unpublished doctoral dissertation]. Middle East Technical University.

  • Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: Teaching socio-scientific issues. McGraw-Hill Education.

  • Riggs, I. M., & Enochs, L. G. (1990). Toward the development of an elementary teacher’s science teaching efficacy belief instrument. Science Education, 74(6), 625–637.

    Article  Google Scholar 

  • Sadler, T. D. (2009). Situated learning in science education: socio‐scientific issues as contexts for practice. Studies in science Education, 45(1), 1–42.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112–138. https://doi.org/10.1002/tea.20042

    Article  Google Scholar 

  • Schenk, L., Hamza, K., Arvanitis, L., Lundegård, I., Wojcik, A., & Haglund, K. (2021). Socioscientific issues in science education: An opportunity to incorporate education about risk and risk analysis?. Risk Analysis, 41(12), 2209–2219.

    Article  Google Scholar 

  • Schumacker, R. E., & Lomax, R. G. (1996). A beginner’s guide to structural equation modeling. Lawrence Erlbaum.

  • Sjöberg, L. (2008). Genetically modified food in the eyes of the public and experts. Risk Management, 10(3), 168–193.

    Article  Google Scholar 

  • Swars, S., Hart, L. C., Smith, S. Z., Smith, M. E., & Tolar, T. (2007). A longitudinal study of elementary pre-service teachers' mathematics beliefs and content knowledge. School Science and Mathematics, 107(8), 325–335.

    Article  Google Scholar 

  • Tanel, R. (2013). Prospective physics teachers’ beliefs about teaching and conceptual understandings for the subjects of force and motion. Journal of Baltic Science Education, 12(1), 6–20.

    Article  Google Scholar 

  • Tekkaya, C., Akyol, G., & Sungur, S. (2012). Relationships among teachers’ knowledge and beliefs regarding the teaching of evolution: a case for Turkey. Evolution: Education and Outreach, 5(3), 477–493.

  • Topcu, M. S., Sadler, T. D., & Yilmaz‐Tuzun, O. (2010). Preservice science teachers’ informal reasoning about socioscientific issues: The influence of issue context. International Journal of Science Education, 32(18), 2475–2495.

  • Verdurme, A., & Viaene, J. (2003). Consumer beliefs and attitude towards genetically modified food: basis for segmentation and implication for communication. Agribusiness, 19(1), 91–113.

    Article  Google Scholar 

  • Wang, S., Wang, J., Lin, S., & Li, J. (2019). Public perceptions and acceptance of nuclear energy in China: The role of public knowledge, perceived benefit, perceived risk and public engagement. Energy Policy, 126, 352–360.

    Article  Google Scholar 

  • Yahaya, J. M., Zain, A. N., & Karpudewan, M. (2015). The effects of socio-scientific instruction on preservice teachers’ sense of efficacy for learning and teaching controversial family health issues. International Journal of Science and Mathematics Education, 13(2), 467–491.

    Article  Google Scholar 

  • Zhang, M., & Liu, G. L. (2015). The effects of consumer’s subjective and objective knowledge on perceptions and attitude towards genetically modified foods: Objective knowledge as a determinant. International Journal of Food Science & Technology, 50(5), 1198–1205.

    Article  Google Scholar 

  • Zhu, W., Wei, J., & Zhao, D. (2016). Anti-nuclear behavioral intentions: the role of perceived knowledge, information processing, and risk perception. Energy Policy, 88, 168–177.

    Article  Google Scholar 

Download references

Funding

This work was supported by The Scientific and Technological Research Council of Turkiye (TUBITAK-2214-A Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Ozturk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, N., Yilmaz-Tuzun, O. Knowledge and Risk–Benefit Perception as Predictors of Preservice Science Teachers’ Self-Efficacy Beliefs for Socioscientific Issues–Based Instruction. Can. J. Sci. Math. Techn. Educ. 22, 915–930 (2022). https://doi.org/10.1007/s42330-022-00249-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-022-00249-8

Keywords

Navigation