Skip to main content
Log in

Response Surface Methodology as a Predictive Tool and UPLC-HRMS Analysis of Phenolic Rich Extract from Verbena officinalis L. Using Microwave-Assisted Extraction: Part I

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain type of cancers. Maximum retention of these phyto-chemicals during extraction requires optimized process parameter conditions. Verbena officinalis was treated using “green” technic and “green” solvent by elaboration of an efficient alternative protocol in order to obtain a phenolic rich extract. A microwave-assisted extraction (MAE) method was investigated to obtain high phenolic compounds content from this plant with high antioxidant activities. The main studied extraction parameters were: time (t: 5 to 25 min), irradiation power (P: 150 to 750 W), liquid-to-solid ratio (R: 10 to 50 mL g−1) and pH (pH: 3 to 7). A microwave-assisted extraction showed that the best performance, resulting in an extract with phenolic and flavonoid contents (94.48 mg GAE/g DW and 64.07 mg QE/g DW, respectively), a DPPH and FRAP says (23.99 µg/ml and 997.46 µM of BHT/g DW, respectively). The optimal conditions were: extraction time = 15 min, microwave power = 550 W, solvent pH equal to 5.5 and liquid-to-solid ratio = 39 ml/g. To our knowledge, the polyphenolic rich extract has been analyzed using UPLC-HRMS apparatus which allowed us to identify seven phenolic compounds: verbascoside, isoverbascoside, hydroxytyrosol glucoside and four flavonoid compounds including: Cirsilineol, Catechine (+),Naringenin and quercetin-3-O-rutinoside. Results showed that this innovative and green extraction method (microwave extraction) can be used successfully to obtain bioactive compounds in higher amounts from Verbena officinalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

RSM:

Response surface methodology

CCD :

Central composite design

QE:

Quercetin equivalent

GAE :

Gallic acid equivalent

DM :

Plant dry matter

A :

Absorbance

IC50 :

Inhibition concentration at 50%

P:

Power

t:

Time of extraction

R:

Solvent/solid ratio

MAE:

Microwave-assisted extraction

TPC :

Total phenol contents

TFC:

Total flavonoids contents

FRAP:

Ferric reducing antioxidant power

DPPH :

1,1-Diphenyl-2-picrylhydrazyl

References

  1. Kokotkiewicz A, Zabiegala B, Kubica P, Szopa A, Bucinski A, Ekiert H, Luczkiewicz M (2021) Plant Cell Tissue Organ Cult 144:671–679

    Article  CAS  Google Scholar 

  2. Abdulmannan HF, Zahurin M, Zamri C, Abdulsamad A, Siti Rosmani MZ, Alshawsh MA (2019) Chem-Biol Interact 304:28

    Article  Google Scholar 

  3. Riguene H, Salem RB, Rigane G (2020) OMCIJ 9:57–60

    Google Scholar 

  4. Kubica P, Szopa A, Dominiak J, Łuczkiewicz M, Ekiert H (2018) Postępy Fitoterapii 183–194

  5. Riguene H, Dali S, Salem RB, Rigane G (2022) Rev Roum Chim 67:393–406

    Google Scholar 

  6. Hasni S, Khedher O, Riguene H, Ghazghazi H, Zengin G, Oueslati MA, Rigane G, Ben Salem R (2022) Rev Roum Chim 67:455–465

    Article  Google Scholar 

  7. Hasni S, Rigane G, Ghazghazi H, Riguene H, Bouallegue A, Khedher O, Oueslati MA, Ben Salem R (2021). J Food Qual. https://doi.org/10.1155/2021/5591022

    Article  Google Scholar 

  8. Lin D, Qing MA, Zhang Y, Peng Z (2020) Prep Biochem Biotechnol 50:874–882

    Article  CAS  PubMed  Google Scholar 

  9. Gavahian M, Mathad GN, Pandiselvam R, Lin J, Sun DW (2021) Trends Food Sci Technol 115:42–54

    Article  CAS  Google Scholar 

  10. Xue Y, Guo L, Lin J, Lai P, Rui G, Liu L, Huang R, Jing Y, Wang F, Ding G (2022). Biomed Res Int. https://doi.org/10.1155/2022/5182172

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kutlu N, Bicak C, Ekinci D, Kilic E, Erdem N, Isci A, Sakiyan O (2018) GIDA 43:264–272

    Article  Google Scholar 

  12. Le XD, Nguyen MC, Vu DH, Pham MQ, Pham QL, Nguyen QT, Nguyen TA, Pham VT, Bach LG, Nguyen TV, Tran QT (2019) Processes 7:485

    Article  CAS  Google Scholar 

  13. Alara OR, Abdurahman NH (2019) Ind Crops Prod 137:528–535

    Article  CAS  Google Scholar 

  14. Cassol L, Pelayo C, Noreña Z (2019) Ind Crop Prod 133:168–177

    Article  CAS  Google Scholar 

  15. Ferreira DF, Lucas BN, Voss M, Santos D, Mello PA, Wagner R, Cravotto G, Barin JS (2020) Ind Crops Prod 145:112094. https://doi.org/10.1016/j.indcrop.2020.112094

    Article  CAS  Google Scholar 

  16. Fkiri S, Essghaier B, Stiti B, Achour H, Ben Slimane L, Ben Salem R, Nasr Z, Ksouri R, Rigane G, Khaldi A (2023). Chem Biodivers. https://doi.org/10.1002/cbdv.202300047

    Article  PubMed  Google Scholar 

  17. Shehata MG, Abd El Aziz NM, Youssef MM, El-Sohaimy SA (2021) J Food Process Preserv 45:e15870

    Article  CAS  Google Scholar 

  18. Priyadharshini SD, Bakthavatsalam AK (2016) Bioresour Technol 207:150–156

    Article  Google Scholar 

  19. Pandiselvam R, Prithviraj V, Manikantan MR, Beegum PS, Ramesh SV, Padmanabhan S, Kothakota A, Mathew AC, Hebbar KB, Khaneghah AM (2022) Food Meas 5:00015

    Article  Google Scholar 

  20. Zhao CN, Zhang JJ, Li Y, Meng X, Li HB (2018) Molecules 23:2498

    Article  PubMed  PubMed Central  Google Scholar 

  21. Çelik S, Kutlu N, Gerçek YC, Bayram S, Pandiselvam R, Bayram NE (2022) Foods 11:3652

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yahyaoui A, Arfaoui MO, Rigane G, Hkir A, Amari K, Ben Salem R, Ammari Y (2019) Chem Afr 2:361–365

    Article  CAS  Google Scholar 

  23. Kaderides K, Papaoikonomou L, Serafim M, Goula AM (2019) Chem Eng Process 137:1–11

    Article  CAS  Google Scholar 

  24. Xie JH, Dong CJ, Nie SP, Li F, Wang ZJ, Shen MY, Xie MY (2015) Food Chem 186:97–105

    Article  CAS  PubMed  Google Scholar 

  25. Wu T, Yan J, Liu R, Marcone MF, Aisa HA, Tsao R (2012) Food Chem 133:1292–1298

    Article  CAS  Google Scholar 

  26. Veggi PC, Martinez J, Meireles MAA (2013) Chapitre 2 : Fundamentals of microwave extraction

  27. Maran JP, Sivakumar V, Thirugnanatsambandham K, Sridhar R (2014) Carbohydr Polym 101:786–791

    Article  Google Scholar 

  28. Huang J, He W, Yan C, Du X, Shi X (2017) BIO Web Conf 8:03008

    Article  Google Scholar 

  29. Aydar AY, Aydın T, Yılmaz T, Kothakota A, Terezia SC, Leontin CF, Pandiselvam R (2022) Ultrason Sonochem 90:106184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zulkifli SA, Abd Gani SS, Zaidan UH, Halmi MIE (2020) Molecules 25:787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Iftikhar S, Qamar MT, Aydar AY, Ahmed D (2022) Folia Hortic

  32. Ismail-Suhaimy NW, Gani SSA, Zaidan UH, Halmi MIE, Bawon P (2021) Plants 10:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang ZH, Pan TW (2017) Pan Biomed Res 28:3996–4001

    CAS  Google Scholar 

  34. Pandiselvam R, Hebbar KB, Manikantan MR, Prashanth BK, Beegum S, Ramesh SV (2020) Sugar Tech 22:718–726

    Article  CAS  Google Scholar 

  35. Mahdhi A, Ghazghazi H, El Aloui M, Ben Salem R, Rigane G (2021) Food Sci Nutr 9:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boukhris M, Simmonds MS, Sayadi S, Bouaziz M (2013) Phytother Res 27:1206–1213

    Article  CAS  PubMed  Google Scholar 

  37. Ben Salah H, Smaoui S, Abdennabi R, Allouche N (2019) Evid Based Complement Alternat Med 9814537:2019.

  38. Ben Hmed M, Rigane G, Ben Salem R, Zouari N, Cherif S (2020) Rev Roum Chim 65:173–178

    Article  Google Scholar 

  39. Rehecho S, Hidalgo O, de Cirano MGI, Navarro I, Astiasarán I, Ansorena DRY, Cavero RY, Calvo MI (2011) Food Sci Technol 44:875–882

    CAS  Google Scholar 

  40. Rigane G, Jebali J, Ghazghazi H, Riguene H, Khouja ML, Ben Salem R (2019) Rev Roum Chim 64:999–1006

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Higher Education and Scientific Research, Tunisia as well as Ministry of Agriculture, for their financial are grateful and Professor Mohamed Rigane for useful discussions about the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghayth Rigane.

Ethics declarations

Conflict of interest

There are no conflicts of Interest. Ridha Ben Salem and Ghayth Rigane are Associate Editors of Chemistry Africa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riguene, H., Moussaoui, Y., Salem, R.B. et al. Response Surface Methodology as a Predictive Tool and UPLC-HRMS Analysis of Phenolic Rich Extract from Verbena officinalis L. Using Microwave-Assisted Extraction: Part I. Chemistry Africa 6, 2857–2869 (2023). https://doi.org/10.1007/s42250-023-00695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00695-3

Keywords

Navigation