Skip to main content
Log in

Development of Supramolecular Metallogel Derived from Nickel(II)-Salt and Adipic Acid: An Effective Material for Microelectronic Semiconducting Device Application

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

An approach for the ultrasonication based synthesis of nickel(II)-metallogel was devised by employing nickel(II)-acetate salt and adipic acid at room temperature in dimethylformamide (DMF) medium. The metallogel was shown to be mechanically stable and self-healing using rheological and thixotropic analyses. Ni(II)-metallogel was described by its stone-like morphological features using field emission scanning electron microscopy (FESEM) study. The main chemical components of the metallogel have been verified by the energy dispersive X-ray (EDX) elemental mapping measurement. Additionally, the electronic device based on the metal-semiconductor (MS) junction demonstrates the electrical conductivity because of supramolecular arrangement of the Ni(II)-metallogel. Extensive testing was done to determine the metallogel’s electrical properties. There was an investigation on the synthesised Ni(II)-metallogel based device’s semi-conductive properties, and a Schottky barrier diode was fabricated successfully.

Graphical Abstract

Adipic acid is used as a low molecular weight gelator to synthesize a metallogel in presence of Nickel(II)-ion, which offers semiconducting nature of the metallogel and it has been further verified with electronic device characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H (2011) Nat Chem 3:34–37. https://doi.org/10.1038/nchem.893

    Article  CAS  PubMed  Google Scholar 

  2. Park T, Zimmerman SC (2006) J Am Chem Soc 128:11582–11590. https://doi.org/10.1021/ja0631854

    Article  CAS  PubMed  Google Scholar 

  3. Shirakawa M, Fujita N, Shinkai S (2003) J Am Chem Soc 125:9902–9903. https://doi.org/10.1021/ja035933k

    Article  CAS  PubMed  Google Scholar 

  4. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) Angew Chem Int Ed 47:8002–8018. https://doi.org/10.1002/anie.200800022

    Article  CAS  Google Scholar 

  5. Hamley IW (2003) Angew. Chem. Int Ed 42:1692–1712. https://doi.org/10.1002/anie.200200546

    Article  CAS  Google Scholar 

  6. Kato T, Mizoshita N, Kishimoto K (2005) Angew Chem Int Ed 45:38–68. https://doi.org/10.1002/anie.200501384

    Article  CAS  Google Scholar 

  7. Low Molecular Mass Gelators (2005). In: Fages F (ed) Design self-assembly function. Topics in current chemistry. Springer-Verlag, Berlin, p 256

    Google Scholar 

  8. de Jong JDD, Feringa BL (2006) Molecular gels, materials with self-assembled fibrillar networks. Springer, Cham

    Google Scholar 

  9. Luis JP, Laukhin VD, Pino ÁP, Gancedo JV, Rovira C, Laukhina E, Amabilino DB (2006) Angew Chem Int Ed 46:238–241. https://doi.org/10.1002/anie.200602483

    Article  CAS  Google Scholar 

  10. Yang Z, Ho PL, Liang G, Chow KH, Wang Q, Cao Y, Guo Z, Xu B (2007) J Am Chem Soc 129:266–267. https://doi.org/10.1021/ja0675604

    Article  CAS  PubMed  Google Scholar 

  11. Dastidar P (2008) Chem Soc Rev 37:2699–2715. https://doi.org/10.1039/B807346E

    Article  CAS  PubMed  Google Scholar 

  12. Steed JW, Atwood JL (2009) Supramolecular chemistry. John Wiley & Sons, Great-Britain

    Book  Google Scholar 

  13. Steed JW (2001) Chem Commun 47:1379–1383. https://doi.org/10.1039/C0CC03293J

    Article  Google Scholar 

  14. Zinic M, Vögtle F, Fages F (2005) Top Curr Chem 256:39–76. https://doi.org/10.1007/b107171

    Article  CAS  PubMed  Google Scholar 

  15. George M, Tan G, John VT, Weiss RG (2005) Chem Eur J 11:3243–3254. https://doi.org/10.1002/chem.200401066

    Article  CAS  PubMed  Google Scholar 

  16. Wezenberg SJ, Croisetu CM, Stuart MCA, Feringa BL (2006) Chem Sci 7:4341–4346

    Article  Google Scholar 

  17. Draper ER, Adams DJ (2016) Chem Commun 52:8196–8206. https://doi.org/10.1039/C6CC03485C

    Article  CAS  Google Scholar 

  18. Yan J, Liu J, Jing P, Xu C, Wu J, Gao D, Fang Y (2012) Soft Matter 8:11697–11703. https://doi.org/10.1039/C2SM26332G

    Article  CAS  Google Scholar 

  19. Fages F, Vögtle F, Žinic M (2022) Topics in current chemistry. Springer, Berlin. https://doi.org/10.1007/b107172

    Book  Google Scholar 

  20. Tsou C-C, Sun S-S (2006) Org Lett 8:387–390. https://doi.org/10.1021/ol052542x

    Article  CAS  PubMed  Google Scholar 

  21. Du X, Zhou J, Shi J, Xu B (2015) Chem Rev 115:13165–13307. https://doi.org/10.1021/acs.chemrev.5b00299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Narayana C, Upadhyay RK, Chaturvedi R, Sagar R (2017) New J Chem 41:2261–2267. https://doi.org/10.1039/C6NJ03520E

    Article  CAS  Google Scholar 

  23. Jung JH, John G, Masuda M, Yoshida K, Shinkai S, Shimizu T (2001) Langmuir 17:7229–7232. https://doi.org/10.1021/la0109516

    Article  CAS  Google Scholar 

  24. Tomasini C, Castellucci N (2013) Chem Soc Rev 42:156–172. https://doi.org/10.1039/C2CS35284B

    Article  CAS  PubMed  Google Scholar 

  25. Samai S, Dey J, Biradha K (2011) Soft Matter 7:2121–2126. https://doi.org/10.1039/C0SM01293A

    Article  CAS  Google Scholar 

  26. Jiang B, Chen L-J, Yin G-Q, Wang Y-X, Zheng W, Xu L, Yang H-B (2017) Chem Commun 53:172–175. https://doi.org/10.1039/C6CC08382J

    Article  CAS  Google Scholar 

  27. Offiler CA, Jones CD, Steed JW (2017) Chem Commun 53:2024–2027. https://doi.org/10.1039/C6CC09126A

    Article  CAS  Google Scholar 

  28. Yao Z, Wang Z, Yu Y, Zeng C, Cao K (2017) Polymer 119:98–106. https://doi.org/10.1016/j.polymer.2017.05.018

    Article  CAS  Google Scholar 

  29. Rajamalli P, Malakar P, Atta S, Prasad E (2014) Chem Commun 50:11023–11025. https://doi.org/10.1039/C4CC04231J

    Article  CAS  Google Scholar 

  30. Lin Q, Yang Q-P, Sun B, Fu Y-P, Zhu X, Wei T-B, Zhang Y-M (2014) Soft Matter 10:8427–8432. https://doi.org/10.1039/C4SM01288G

    Article  CAS  PubMed  Google Scholar 

  31. Amacher AM, Puigmartí-Luis J, Geng Y, Lebedev V, Laukhin V, Kramer K, Hauser J, Amabilino DB, Decurtins S, Decurtins S-X (2015) Chem Commun 51:15063–15066. https://doi.org/10.1039/C5CC06819C

    Article  CAS  Google Scholar 

  32. Sarkar S, Dutta S, Bairi P, Pal T (2014) Langmuir 30:7833–7841. https://doi.org/10.1021/la501309m

    Article  CAS  PubMed  Google Scholar 

  33. Mitsumoto K, Cameron JM, Wei R-J, Nishikawa H, Shiga T, Nihei M, Newton GN, Oshio H (2017) Chem Eur J 23:1502–1506. https://doi.org/10.1002/chem.201605542

    Article  CAS  PubMed  Google Scholar 

  34. Bunzen H, Nonappa, Kalenius E, Hietala S, Kolehmainen E (2013) Chem Eur J 19:12978–12981. https://doi.org/10.1002/chem.201302055

    Article  CAS  PubMed  Google Scholar 

  35. Karan CK, Bhattacharjee M (2016) ACS Appl Mater Interfaces 8:5526–5535. https://doi.org/10.1021/acsami.5b09831

    Article  CAS  PubMed  Google Scholar 

  36. Dey S, Datta D, Chakraborty K, Nandi S, Anoop A, Pathak T (2013) RSC Adv 3:9163–9166. https://doi.org/10.1039/C3RA41178H

    Article  CAS  Google Scholar 

  37. Piepenbrock M-OM, Clarke N, Steed JW (2010) Soft Matter 6:3541–3547. https://doi.org/10.1039/C0SM00313A

    Article  CAS  Google Scholar 

  38. Piepenbrock M-OM, Clarke N, Steed JW (2009) Langmuir 2:8451–8456. https://doi.org/10.1021/la900145n

    Article  CAS  Google Scholar 

  39. Wang X-Q, Wang W, Yin G-Q, Wang Y-X, Zhang C-W, Shi J-M, Yu Y, Yang H-B (2015) Chem Commun 51:16813–16816. https://doi.org/10.1039/C5CC05625J

    Article  CAS  Google Scholar 

  40. Gou F, Cheng J, Zhang X, Shen G, Zhou X, Xiang H (2016). Eur J Inorg Chem. https://doi.org/10.1002/ejic.201600839

    Article  Google Scholar 

  41. Kelly N, Gloe K, Doert T, Hennersdorf F, Heine A, Marz J, Schwarzenbolz U, Weigand JJ, Gloe KJ (2016) Organomet Chem 821:182–191. https://doi.org/10.1016/j.jorganchem.2016.04.021

    Article  CAS  Google Scholar 

  42. Dhibar S, Dey A, Majumdar S, Ghosh D, Mandal A, Ray PP, Dey B (2018) Dalton Trans 47:17412–17420. https://doi.org/10.1039/C8DT03773F

    Article  CAS  PubMed  Google Scholar 

  43. Dhibar S, Dey A, Ghosh D, Majumdar S, Dey A, Mukherjee P, Mandal A, Ray PP, Dey B (2019) Chem Select 4:1535–1541. https://doi.org/10.1002/slct.201803004

    Article  CAS  Google Scholar 

  44. Dhibar S, Dey A, Majumdar S, Ghosh D, Ray PP, Dey B (2019) ACS Appl Electron Mater 1:1899–1908. https://doi.org/10.1021/acsaelm.9b00410

    Article  CAS  Google Scholar 

  45. Dhibar S, Dey A, Majumdar S, Mandal A, Ray PP, Dey B (2019) New J Chem 43:15691–15699. https://doi.org/10.1039/C9NJ03457A

    Article  CAS  Google Scholar 

  46. Dhibar S, Dey A, Majumdar S, Dey A, Ray PP, Dey B (2020) Ind Eng Chem Res 59:5466–5473. https://doi.org/10.1021/acs.iecr.9b06032

    Article  CAS  Google Scholar 

  47. Po C, Ke Z, Tam AYY, Chow HF, Yam VWW (2013) Chem Eur J 19:15735–15744. https://doi.org/10.1002/chem.201302702

    Article  CAS  PubMed  Google Scholar 

  48. Ganta S, Chand DK (2018) Inorg Chem 57:3634–3645. https://doi.org/10.1021/acs.inorgchem.7b02239

    Article  CAS  PubMed  Google Scholar 

  49. Chen P, Li Q, Grindy S, Holten-Andersen N (2015) J Am Chem Soc 137:11590–11593. https://doi.org/10.1021/jacs.5b07394

    Article  CAS  PubMed  Google Scholar 

  50. Ganta S, Chand DK (2015) Dalton Trans 44:15181–15188. https://doi.org/10.1039/C4DT03715D

    Article  CAS  PubMed  Google Scholar 

  51. Yang L, Luo L, Zhang S, Su X, Lan J, Chen C-T, You J (2010) Chem Commun 46:3938–3940. https://doi.org/10.1039/C0CC00112K

    Article  CAS  Google Scholar 

  52. Xing B, Choi M-F, Zhou Z, Xu B (2002) Langmuir 18:9654–9658. https://doi.org/10.1021/la0256580

    Article  CAS  Google Scholar 

  53. Ma X, Liu S, Zhang Z, Niu Y, Wu J (2017) Soft Matter 13:8882–8885. https://doi.org/10.1039/C8CC08090A

    Article  CAS  PubMed  Google Scholar 

  54. Saha S, Schon E-M, Cativiela C, Diaz DD, Banerjee R (2013) Chem Eur J 19:9562–9568. https://doi.org/10.1002/chem.201204542

    Article  CAS  PubMed  Google Scholar 

  55. Aiyappa HB, Saha S, Wadge P, Banerjee R, Kurungot S (2015) Chem Sci 6:603–607. https://doi.org/10.1039/C4SC02294G

    Article  CAS  PubMed  Google Scholar 

  56. Díaz DD, Kuhbeck D, Koopmans RJ (2011) Chem Soc Rev 40:427–448. https://doi.org/10.1039/C005401C

    Article  Google Scholar 

  57. Sarkar S, Dutta S, Chakrabarti S, Bairi P, Pal T (2014) ACS Appl Mater Interfaces 6:6308–6316. https://doi.org/10.1021/am501491u

    Article  CAS  PubMed  Google Scholar 

  58. Lin Q, Lu T-T, Zhu X, Sun B, Yang Q-P, Wei T-B, Zhang Y-M (2015) Chem Commun 51:1635–1638. https://doi.org/10.1039/C4CC07814D

    Article  CAS  Google Scholar 

  59. Huang J, He L, Zhang J, Chen L, Su C-Y (2010) J Mol Catal A 317:97–103. https://doi.org/10.1016/j.molcata.2009.11.001

    Article  CAS  Google Scholar 

  60. Xing B, Choi M-F, Xu B (2002) Chem Eur. J 8:5028–5032

    CAS  Google Scholar 

  61. Grondin P, Roubeau O, Castro M, Saadaoui H, Colin A, Clerac R (2010) Langmuir 26:5184–5195. https://doi.org/10.1021/la903653d

    Article  CAS  PubMed  Google Scholar 

  62. Pandey VK, Dixit MK, Manneville S, Bucher C, Dubey M (2017) J Mater Chem A 5:6211–6218. https://doi.org/10.1039/C7TA00854F

    Article  CAS  Google Scholar 

  63. Ljpez D, Guenet JM (2001) Macromolecules 34:1076–1081

    Article  Google Scholar 

  64. Mukhopadhyay RD, Das G, Ajayaghosh A (2018) Nat Comm 9:1–9. https://doi.org/10.1038/s41467-018-04303-8

    Article  CAS  Google Scholar 

  65. Kelly N, Gloe K, Doert T, Hennersdorf F, Heine A, Maerz J, Schwarzenbolz U, Weigand JJ, Gloe K (2016) J Organomet Chem 821:182–191. https://doi.org/10.1016/j.jorganchem.2016.04.021

    Article  CAS  Google Scholar 

  66. Majumdar S, Sil S, Sahu R, Ghosh M, Lepcha G, Dey A, Mandal S, Ray PP, Dey B (2021) J Mol Liq 338:116769. https://doi.org/10.1016/j.molliq.2021.116769

    Article  CAS  Google Scholar 

  67. Majumdar S, Dey A, Sahu R, Lepcha G, Dey A, Ray PP, Dey B (2023) Mater Res Bull 157:112003. https://doi.org/10.1016/j.materresbull.2022.112003

    Article  CAS  Google Scholar 

  68. Das P, Majumdar S, Dey A, Mandal S, Mondal A, Chakrabarty S, Ray PP, Dey B (2021) New J Chem 45:15920–15927. https://doi.org/10.1039/D1NJ01629F

    Article  CAS  Google Scholar 

  69. Lepcha G, Singha T, Majumdar S, Pradhan AK, Das KS, Datta PK, Dey B, Dalton Trans (2022) Adv Article. https://doi.org/10.1039/D2DT01983C

    Article  Google Scholar 

  70. Arnedo-Sánchez L, Nonappa, Bhowmik S, Hietala S, Puttreddy R, Lahtinen M, De Cola L, Rissanen K (2017) Dalton Trans 46:7309–7316. https://doi.org/10.1039/C7DT00983F

    Article  PubMed  Google Scholar 

  71. Dhibar S, Jana R, Ray PP, Dey B (2019) J Mol Liq 289:111–126. https://doi.org/10.1016/j.molliq.2019.111126

    Article  CAS  Google Scholar 

  72. Dhibar S, Dey A, Ghosh D, Majumdar S, Dey A, Ray PP, Dey B (2020) ACS Omega 5:2680–2689. https://doi.org/10.1021/acsomega.9b03194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dhibar S, Dey A, Majumdar S, Ray PP, Dey B (2021) Int J Energy Res 45:5486–5499. https://doi.org/10.1002/er.6176

    Article  CAS  Google Scholar 

  74. Dhibar S, Ojha SK, Mohan A, Chimminiankuttichi Prabhakaran SP, Bhattacharjee S, Karmakar K, Karmakar P, Predeep P, Ojha AK, Saha B (2022) New J Chem 46:17189–17200. https://doi.org/10.1039/D2NJ03086A

    Article  CAS  Google Scholar 

  75. Dhibar S, Dey A, Jana R, Chatterjee A, Das GK, Ray PP, Dey B (2019) Dalton Trans 48:17388–17394. https://doi.org/10.1039/C8DT03773F

    Article  CAS  PubMed  Google Scholar 

  76. Dey A, Sil S, Majumdar S, Sahu R, Ghosh M, Lepcha G, Ray PP, Dey B (2022) J Phys Chem Solids 160:110300. https://doi.org/10.1016/j.jpcs.2021.110300

    Article  CAS  Google Scholar 

  77. Majumdar S, Dey A, Sahu R, Dhibar S, Ray PP, Dey B (2020) ACS Appl Nano Mater 3:11025–11036. https://doi.org/10.1021/acsanm.0c02215

    Article  CAS  Google Scholar 

  78. Kumar V, Upadhyay RK, Bano D, Chandra S, Kumar D, Jit S, Hasan SH (2021) New J Chem 45:6273–6280. https://doi.org/10.1039/d1nj00394a

    Article  CAS  Google Scholar 

  79. Verkerk MJ, Middelhuis BJ, Burggraaf AJ (1982). Solid State Ion. https://doi.org/10.1016/0167-2738(82)90083-2

    Article  Google Scholar 

  80. Whitea CL, LaDuca RL (2016) CrystEngComm 18:6789–6797. https://doi.org/10.1039/C6CE01368F

    Article  Google Scholar 

  81. El-Denglawey A, Makhlouf MM, Dongol M, El-Nahass MM (2015) J Mater Sci  26:5603–5609

    CAS  Google Scholar 

  82. Dongol M, El-Nahass MM, El-Denglawey A, Elhady AF, Abuelwaf AA (2012) Curr Appl Phys 12:1178–1184. https://doi.org/10.1016/j.cap.2012.02.051

    Article  Google Scholar 

  83. Zhokhavets U, Goldhahn R, Gobsch G, Schliefke W (2003) Synth Met 138:491–495. https://doi.org/10.1016/S0379-6779(02)00502-7

    Article  CAS  Google Scholar 

  84. Dey A, Middya S, Jana R, Das M, Datta J, Layek A, Ray PP (2016) J Mater Sci  27:6325–6335. https://doi.org/10.1007/s10854-016-4567-5

    Article  CAS  Google Scholar 

  85. Cheung S, Cheung N (1986) Appl Phys Lett 49:85–87. https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  86. Hossain A, Dey A, Seth SK, Ray PP, Ballester P, Pritchard RG, Ortega-Castro J, Frontera A, Mukhopadhyay S (2018) ACS Omega 3:9160–9171. https://doi.org/10.1021/acsomega.8b01111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Middya S, Layek A, Dey A, Datta J, Das M, Banerjee C, Ray PP (2014) Chem Phys Lett 610:39–44. https://doi.org/10.1016/j.cplett.2014.07.003

    Article  CAS  Google Scholar 

  88. Maity DK, Dey A, Ghosh S, Halder A, Ray PP, Ghoshal D (2018) Inorg Chem 57:251–263. https://doi.org/10.1021/acs.inorgchem.7b02435

    Article  CAS  PubMed  Google Scholar 

  89. He Y, Ma G, Zhou X, Cai H, Liu C, Zhang J, Wang H (2019) Org Electron 68:230–235. https://doi.org/10.1016/j.orgel.2019.02.025

    Article  CAS  Google Scholar 

  90. Blom PWM, de Jong MJM, van Munster MG (1997). Phys Rev B. https://doi.org/10.1103/PhysRevB.55.R656

    Article  Google Scholar 

  91. Karmakar K, Dey A, Dhibar S, Sahu R, Bhattacharjee S, Karmakar P, Chatterjee P, Mondal A, Saha B (2023). RSC Adv. https://doi.org/10.1039/d2ra07374a

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ghorai P, Dey A, Brandão P, Ortega-Castro J, Bauza A, Frontera A, Ray PP, Saha A (2017) Dalton Trans 46:13531–13543

    Article  CAS  PubMed  Google Scholar 

  93. Hossain A, Dey A, Seth SK, Ray PP, Ballester P, Pritchard RG, Ortega-Castro J, Frontera A, Mukhopadhyay S (2018) ACS Omega 3:9160–9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.D. sincerely thanks to the University Grants Commission (UGC), New Delhi, for awarding him Dr. DS Kothari Postdoctoral Fellowship (Award letter No. F.4 − 2/2006 (BSR)/CH/19–20/0224). K.K. is grateful to the UGC, New Delhi, for providing the Junior Research Fellowship for his Ph.D studies (Award letter number: 63/(CSIR-UGC NET June 2019). S.B. thankfully acknowledges the support of the DST Inspire Faculty Research Grant (Faculty Registration No. IFA18-CH304; DST/INSPIRE/04/2018/000329).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Subhendu Dhibar: Conceptualization, Methodology, Writing-Original draft preparation, Supervision, Writing-Reviewing and Editing. Saurav Kumar Ojha: Electrical Data curation, Writing-Original draft preparation, Kripasindhu Karmakar: Methodology, Writing-Original draft preparation, Writing-Reviewing and Editing, Priya Karmakar: Electrical Data curation, Writing-Original draft preparation, Subham Bhattacharjee: Rheological Analysis, Writing-Original draft preparation, Priyajit Chatterjee: FESEM Investigation, Animesh Kumar Ojha: Supervision, Validation, Bidyut Saha: Supervision, Writing- Reviewing and Editing.

Corresponding authors

Correspondence to Subhendu Dhibar, Animesh K. Ojha or Bidyut Saha.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhibar, S., Ojha, S.K., Karmakar, K. et al. Development of Supramolecular Metallogel Derived from Nickel(II)-Salt and Adipic Acid: An Effective Material for Microelectronic Semiconducting Device Application. Chemistry Africa 6, 3217–3228 (2023). https://doi.org/10.1007/s42250-023-00680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00680-w

Keywords

Navigation