Skip to main content
Log in

Silica-Supported Alginates From Djiboutian Seaweed as Biomass-Derived Materials for Efficient Adsorption of Ni(II)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The development of environmentally friendly, reusable and highly performant adsorbent materials for the removal of heavy metal ions is a big challenge in the field of wastewater treatment. Therefore, in this study, ecofriendly composite materials based on alginates extracted from Sargassum sp (Alg.S) and Turbunaria (Alg.T) and supported on different silica particles were prepared and used as adsorbents for Ni(II) ions removal from aqueous solutions. These composites efficiently extract Ni(II) ions, i.e. the optimal adsorption amount of Ni2+ reaches 251 mg.g−1 at pH 5 for one composite, surpassing the adsorption capacities of other adsorbents reported so far in the literature. The kinetic data fit well with a pseudo-second order model. Furthermore, the adsorption in a binary system containing both Ni(II) and Pb(II) was also studied. The effect of pH, concentration, and other parameters on the adsorption capacity as well as on kinetics were systematically examined. These results demonstrate that ours composites show great potential as low-cost bio-adsorbents to remove Ni(II) ions from aqueous solutions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smil V (1983) Biomass. In: Smil V (ed) Biomass energies: resources, links, constraints. Springer, US, Boston, MA, pp 1–19

    Chapter  Google Scholar 

  2. Kuda T, Nishizawa M, Toshima D, Matsushima K, Yoshida S, Takahashi H, Kimura B, Yamagishi T (2021) Antioxidant and anti-norovirus properties of aqueous acetic acid macromolecular extracts of edible brown macroalgae. LWT 141:110942. https://doi.org/10.1016/j.lwt.2021.110942

    Article  CAS  Google Scholar 

  3. Rocher DF, Cripwell RA, Viljoen-Bloom M (2021) Engineered yeast for enzymatic hydrolysis of laminarin from brown macroalgae. Algal Res 54:102233. https://doi.org/10.1016/j.algal.2021.102233

    Article  Google Scholar 

  4. Aden M, Husson J, Monney S, Franchi M, Knorr M, Euvrard M (2019) Biosorption of Pb(II) ions from aqueous solution using alginates extracted from Djiboutian seaweeds and deposited on silica particles. Pure Appl Chem 91:459–475. https://doi.org/10.1515/pac-2018-1003

    Article  CAS  Google Scholar 

  5. Fourreh AE, Abdoul-latif F, Ibrahim MN, Ali AM (2019) Antioxidant activity and phenolic contents of seven brown seaweed from Djibouti coast. Int J Curr Pharm Sci. https://doi.org/10.22159/IJCPR.2019V11I3.34095

    Article  Google Scholar 

  6. Rajauria G, Ravindran R, Garcia-Vaquero M, Rai DK, Sweeney T, O’Doherty J (2021) Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocoll 112:106332. https://doi.org/10.1016/j.foodhyd.2020.106332

    Article  CAS  Google Scholar 

  7. Etman SM, Elnaggar YSR, Abdallah OY (2020) Fucoidan, a natural biopolymer in cancer combating: from edible algae to nanocarrier tailoring. Int J Biol Macromol 147:799–808. https://doi.org/10.1016/j.ijbiomac.2019.11.191

    Article  CAS  PubMed  Google Scholar 

  8. January GG, Naidoo RK, Kirby-McCullough B, Bauer R (2019) Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res 40:101517. https://doi.org/10.1016/j.algal.2019.101517

    Article  Google Scholar 

  9. Fertah M, Belfkira A, Dahmane E, montassir, Taourirte M, Brouillette F, (2017) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10:S3707–S3714. https://doi.org/10.1016/j.arabjc.2014.05.003

    Article  CAS  Google Scholar 

  10. Khajouei RA, Keramat J, Hamdami N, Ursu A-V, Delattre C, Laroche C, Gardarin C, Lecerf D, Desbrières J, Djelveh G, Michaud P (2018) Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini. Int J Biol Macromol 118:1073–1081. https://doi.org/10.1016/j.ijbiomac.2018.06.154

    Article  CAS  PubMed  Google Scholar 

  11. da Costa TB, da Silva TL, Costa CSD, da Silva MGC, Vieira MGA (2022) Chromium adsorption using Sargassum filipendula algae waste from alginate extraction: batch and fixed-bed column studies. Chem Eng J Adv 11:100341. https://doi.org/10.1016/j.ceja.2022.100341

    Article  CAS  Google Scholar 

  12. Hariyadi DM, Islam N (2020) Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci. https://doi.org/10.1155/2020/8886095

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoang HT, Vu TT, Karthika V, Jo S-H, Jo Y-J, Seo J-W, Oh C-W, Park S-H, Lim KT (2022) Dual cross-linked chitosan/alginate hydrogels prepared by Nb-Tz ‘click’ reaction for pH responsive drug delivery. Carbohydr Polym 288:119389. https://doi.org/10.1016/j.carbpol.2022.119389

    Article  CAS  PubMed  Google Scholar 

  14. Pettignano A, Aguilera DA, Tanchoux N, Bernardi L, Quignard F (2019) Alginate: A Versatile Biopolymer for Functional Advanced Materials for Catalysis. In: Studies in Surface Science and Catalysis. pp 357–375

  15. Percival SL, McCarty SM (2015) Silver and alginates: role in wound healing and biofilm control. Adv Wound Care 4:407–414. https://doi.org/10.1089/wound.2014.0541

    Article  Google Scholar 

  16. Wu Y, Han GT, Gong Y, Zhang YM, Xia YZ, Yue CQ, Wu DW (2011) Antibacterial property and mechanism of copper alginate fiber. Adv Mater Res 152–153:1351–1355. https://doi.org/10.4028/www.scientific.net/AMR.152-153.1351

    Article  CAS  Google Scholar 

  17. Luo W, Liu J, Algharib SA, Chen W (2022) Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants. J Vet Sci 23:e48. https://doi.org/10.4142/jvs.21292

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gundewadi G, Rudra SG, Sarkar DJ, Singh D (2018) Nanoemulsion based alginate organic coating for shelf life extension of okra. Food Packag Shelf Life 18:1–12. https://doi.org/10.1016/j.fpsl.2018.08.002

    Article  Google Scholar 

  19. Moreira MR, Cassani L, Martín-Belloso O, Soliva-Fortuny R (2015) Effects of polysaccharide-based edible coatings enriched with dietary fiber on quality attributes of fresh-cut apples. J Food Sci Technol 52:7795–7805. https://doi.org/10.1007/s13197-015-1907-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35:1125–1134. https://doi.org/10.1016/S0043-1354(00)00389-4

    Article  CAS  PubMed  Google Scholar 

  21. He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78. https://doi.org/10.1016/j.biortech.2014.01.068

    Article  CAS  PubMed  Google Scholar 

  22. Vijaya Y, Popuri SR, Boddu VM, Krishnaiah A (2008) Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydr Polym 72:261–271. https://doi.org/10.1016/j.carbpol.2007.08.010

    Article  CAS  Google Scholar 

  23. Han R, Zou L, Zhao X, Xu Y, Xu F, Li Y, Wang Y (2009) Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column. Chem Eng J 149:123–131. https://doi.org/10.1016/j.cej.2008.10.015

    Article  CAS  Google Scholar 

  24. Schaumlöffel D (2012) Nickel species: analysis and toxic effects. J Trace Elem Med Biol 26:1–6. https://doi.org/10.1016/j.jtemb.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Mirbagheri SA, Hosseini SN (2005) Pilot plant investigation on petrochemical wastewater treatmentfor the removal of copper and chromium with the objective of reuse. Desaliantion. https://doi.org/10.1016/J.DESAL.2004.03.022

    Article  Google Scholar 

  26. Ozverdi A, Erdem M (2006) Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J Hazard Mater 137:626–632. https://doi.org/10.1016/j.jhazmat.2006.02.051

    Article  CAS  PubMed  Google Scholar 

  27. Aji B, Yavuz Y, Koparal A (2012) Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep Purif Technol 86:248–254. https://doi.org/10.1016/j.seppur.2011.11.011

    Article  CAS  Google Scholar 

  28. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41. https://doi.org/10.1016/j.seppur.2003.10.006

    Article  CAS  Google Scholar 

  29. Coll MT, Fortuny A, Kedari CS, Sastre AM (2012) Studies on the extraction of Co(II) and Ni(II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant. Hydrometallurgy 125–126:24–28. https://doi.org/10.1016/j.hydromet.2012.05.003

    Article  CAS  Google Scholar 

  30. Samper E, Rodríguez M, De la Rubia MA, Prats D (2009) Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep Purif Technol 65:337–342. https://doi.org/10.1016/j.seppur.2008.11.013

    Article  CAS  Google Scholar 

  31. Blöcher C, Dorda J, Mavrov V, Chmiel H, Lazaridis NK, Matis KA (2003) Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Res 37:4018–4026. https://doi.org/10.1016/S0043-1354(03)00314-2

    Article  CAS  PubMed  Google Scholar 

  32. Edebali S, Pehlivan E (2016) Evaluation of chelate and cation exchange resins to remove copper ions. Power Tech 301:520–525. https://doi.org/10.1016/J.POWTEC.2016.06.011

    Article  CAS  Google Scholar 

  33. Sy K, Ju L, Sh M, Kw K (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56:141–147. https://doi.org/10.1016/j.chemosphere.2004.02.004

    Article  CAS  Google Scholar 

  34. Benettayeb A, Ghosh S, Usman M, Seihoub FZ, Sohoo I, Chia CH, Sillanpää M (2022) Some well-known alginate and chitosan modifications used in adsorption: a review. Water 14:1353. https://doi.org/10.3390/w14091353

    Article  CAS  Google Scholar 

  35. Chen X, Hossain MF, Duan C, Lu J, Tsang YF, Islam MS, Zhou Y (2022) Isotherm models for adsorption of heavy metals from water—a review. Chemosphere 307:135545. https://doi.org/10.1016/j.chemosphere.2022.135545

    Article  CAS  PubMed  Google Scholar 

  36. Ghobashy MM, Younis SA, Elhady MA, Serp P (2018) Radiation induced in-situ cationic polymerization of polystyrene organogel for selective absorption of cholorophenols from petrochemical wastewater. J Environ Manage 210:307–315. https://doi.org/10.1016/j.jenvman.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  37. Oladipo AA, Gazi M (2015) Two-stage batch sorber design and optimization of biosorption conditions by Taguchi methodology for the removal of acid red 25 onto magnetic biomass. Korean J Chem Eng 32:1864–1878. https://doi.org/10.1007/s11814-015-0001-6

    Article  CAS  Google Scholar 

  38. Sun Y, Yue Q, Gao B, Gao Y, Xu X, Li Q, Wang Y (2014) Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study. J Taiwan Inst Chem Eng 45:681–688. https://doi.org/10.1016/j.jtice.2013.05.013

    Article  CAS  Google Scholar 

  39. Chkirida S, Zari N, Bouhfid R (2021) Insight into the bionanocomposite applications on wastewater decontamination: review. J Water Process Eng 43:102198. https://doi.org/10.1016/j.jwpe.2021.102198

    Article  Google Scholar 

  40. Zhang W, Yan H, Li H, Jiang Z, Dong L, Kan X, Yang H, Li A, Cheng R (2011) Removal of dyes from aqueous solutions by straw based adsorbents: batch and column studies. Chem Eng J 168:1120–1127. https://doi.org/10.1016/j.cej.2011.01.094

    Article  CAS  Google Scholar 

  41. Khan SB, Alamry KA, Marwani HM, Asiri AM, Rahman MM (2013) Synthesis and environmental applications of cellulose/ZrO2 nanohybrid as a selective adsorbent for nickel ion. Compos Part B Eng 50:253–258. https://doi.org/10.1016/j.compositesb.2013.02.009

    Article  CAS  Google Scholar 

  42. Kriaa A, Hamdi N, Srasra E (2011) Adsorption studies of methylene blue dye on tunisian activated lignin. Russ J Phys Chem A 85:279–287. https://doi.org/10.1134/S0036024411020191

    Article  CAS  Google Scholar 

  43. Russo T, Fucile P, Giacometti R, Sannino F (2021) Sustainable removal of contaminants by biopolymers: a novel approach for wastewater treatment. Curr State Future Persp Proc 9:719. https://doi.org/10.3390/pr9040719

    Article  CAS  Google Scholar 

  44. Zhang L, Lu H, Yu J, Fan Y, Yang Y, Ma J, Wang Z (2018) Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2+ removal. Cellulose 25:7315–7328

    Article  CAS  Google Scholar 

  45. Mollah MZI, Khan MA, Hoque MA, Aziz A (2008) Studies of physico-mechanical properties of photo-cured sodium alginate with silane monomer. Carbohydr Polym 72:349–355. https://doi.org/10.1016/j.carbpol.2007.09.001

    Article  CAS  Google Scholar 

  46. Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metals removal by biosorbents: a review. Environ Pollut 258:113777. https://doi.org/10.1016/j.envpol.2019.113777

    Article  CAS  PubMed  Google Scholar 

  47. Wan Z, Cho D-W, Tsang DCW, Li M, Sun T, Verpoort F (2019) Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environ Pollut 247:410–420. https://doi.org/10.1016/j.envpol.2019.01.047

    Article  CAS  PubMed  Google Scholar 

  48. Zhao C, Hu L, Zhang C, Wang S, Wang X, Huo Z (2021) Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II). Environ Pollut 287:117303. https://doi.org/10.1016/j.envpol.2021.117303

    Article  CAS  PubMed  Google Scholar 

  49. Yue H, Shang Z, Xu P, Feng D, Li X (2022) Preparation of EDTA modified chitooligosaccharide/sodium alginate/Ca2+ physical double network hydrogel by using of high-salinity oilfield produced water for adsorption of Zn2+, Ni2+ and Mn2+. Sep Purif Technol 280:119767. https://doi.org/10.1016/j.seppur.2021.119767

    Article  CAS  Google Scholar 

  50. Park SH, Kim K, Lim JH, Lee SJ (2019) Selective lithium and magnesium adsorption by phosphonate metal-organic framework-incorporated alginate hydrogel inspired from lithium adsorption characteristics of brown algae. Sep Purif Technol 212:611–618. https://doi.org/10.1016/j.seppur.2018.11.067

    Article  CAS  Google Scholar 

  51. Zhang H, Han X, Liu J, Wang M, Zhao T, Kang L, Zhong S, Cui X (2022) Fabrication of modified alginate-based biocomposite hydrogel microspheres for efficient removal of heavy metal ions from water. Colloids Surf Physicochem Eng Asp 651:129736. https://doi.org/10.1016/j.colsurfa.2022.129736

    Article  CAS  Google Scholar 

  52. Guo J, Han Y, Mao Y, Wickramaratne MN (2017) Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions. Colloids Surf Physicochem Eng Asp 529:801–807. https://doi.org/10.1016/j.colsurfa.2017.06.075

    Article  CAS  Google Scholar 

  53. Gao X, Guo C, Hao J, Zhao Z, Long H, Li M (2020) Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int J Biol Macromol 164:4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046

    Article  CAS  PubMed  Google Scholar 

  54. Wang Z, Wu S, Zhang Y, Miao L, Zhang Y, Wu A (2020) Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater. Int J Biol Macromol 157:687–694. https://doi.org/10.1016/j.ijbiomac.2019.11.228

    Article  CAS  PubMed  Google Scholar 

  55. Jeong SI, Krebs MD, Bonino CA, Khan SA, Alsberg E (2010) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 10:934–943. https://doi.org/10.1002/mabi.201000046

    Article  CAS  PubMed  Google Scholar 

  56. Jiang X, Wang H, Wang Q, Hu E, Duan Y (2020) Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium. J Clean Prod 247:119162. https://doi.org/10.1016/j.jclepro.2019.119162

    Article  CAS  Google Scholar 

  57. Soltani RDC, Khorramabadi GS, Khataee AR, Jorfi S (2014) Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J Taiwan Inst Chem Eng 45:973–980. https://doi.org/10.1016/j.jtice.2013.09.014

    Article  CAS  Google Scholar 

  58. Kragović M, Pašalić S, Marković M, Petrović M, Nedeljković B, Momčilović M, Stojmenović M (2018) Natural and modified zeolite—alginate composites application for removal of heavy metal cations from contaminated water solutions. Minerals 8:11. https://doi.org/10.3390/min8010011

    Article  CAS  Google Scholar 

  59. Shawky HA (2011) Improvement of water quality using alginate/montmorillonite composite beads. J Appl Polym Sci 119:2371–2378. https://doi.org/10.1002/app.32694

    Article  CAS  Google Scholar 

  60. Ahmadpoor F, Shojaosadati SA, Mousavi SZ (2019) Magnetic silica coated iron carbide/alginate beads: synthesis and application for adsorption of Cu (II) from aqueous solutions. Int J Biol Macromol 128:941–947. https://doi.org/10.1016/j.ijbiomac.2019.01.173

    Article  CAS  PubMed  Google Scholar 

  61. Singhon R, Husson J, Knorr M, Lakard B, Euvrard M (2012) Adsorption of Ni(II) ions on colloidal hybrid organic–inorganic silica composites. Colloids Surf B Biointerf 93:1–7. https://doi.org/10.1016/j.colsurfb.2011.12.030

    Article  CAS  Google Scholar 

  62. Aden M, Ubol RN, Knorr M, Husson J, Euvrard M (2017) Efficent removal of nickel(II) salts from aqueous solution using carboxymethylchitosan-coated silica particles as adsorbent. Carbohydr Polym 173:372–382. https://doi.org/10.1016/j.carbpol.2017.05.090

    Article  CAS  PubMed  Google Scholar 

  63. Ponvel KM, Kim Y-H, Lee C-H (2010) Incorporation of nano-sized magnetite particles into mesoporous materials via –COOH groups. Mater Chem Phys 122:397–401. https://doi.org/10.1016/j.matchemphys.2010.03.013

    Article  CAS  Google Scholar 

  64. Goswami A, Singh AK (2002) Silica gel functionalized with resacetophenone: synthesis of a new chelating matrix and its application as metal ion collector for their flame atomic absorption spectrometric determination. Anal Chim Acta 454:229–240. https://doi.org/10.1016/S0003-2670(01)01552-5

    Article  CAS  Google Scholar 

  65. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  66. Ng C, Losso JN, Marshall WE, Rao RM (2002) Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system. Bioresour Technol 85:131–135. https://doi.org/10.1016/S0960-8524(02)00093-7

    Article  CAS  PubMed  Google Scholar 

  67. Dada AO, Ojediran JO, Olalekan AP (2013) Sorption of from aqueous solution unto modified rice husk: isotherms studies. In: Adv. Phys. Chem. https://www.hindawi.com/journals/apc/2013/842425/. Accessed 3 Feb 2021

  68. Tseng R-L, Wu F-C, Juang R-S (2010) Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics. J Taiwan Inst Chem Eng 41:661–669. https://doi.org/10.1016/j.jtice.2010.01.014

    Article  CAS  Google Scholar 

  69. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  70. Clementi F, Crudele MA, Parente E, Mancini M, Moresi M (1999) Production and characterisation of alginate from Azotobacter vinelandii. J Sci Food Agric 79:602–610. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4%3c602::AID-JSFA224%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  71. Torres MR, Sousa APA, Silva Filho EAT, Melo DF, Feitosa JPA, de Paula RCM, Lima MGS (2007) Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydr Res 342:2067–2074. https://doi.org/10.1016/j.carres.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  72. Fourest E, Volesky B (1997) Alginate Properties and Heavy Metal Biosorption by Marine Algae. Appl Biochem Biotechnol 67:215–226. https://doi.org/10.1007/BF02788799

    Article  CAS  Google Scholar 

  73. Clementi F, Mancini M, Moresi M (1998) Rheology of alginate from Azotobacter vinelandii in aqueous dispersions. J Food Eng 36:51–62. https://doi.org/10.1016/S0260-8774(98)00042-9

    Article  Google Scholar 

  74. Chee S-Y, Wong P-K, Wong C-L (2010) Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. J Appl Phycol 23:191–196. https://doi.org/10.1007/s10811-010-9533-7

    Article  Google Scholar 

  75. Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci Iran 19:2023–2028. https://doi.org/10.1016/j.scient.2012.10.005

    Article  CAS  Google Scholar 

  76. Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA (2003) Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20:223–228. https://doi.org/10.1016/S1389-0344(03)00058-3

    Article  CAS  PubMed  Google Scholar 

  77. Lim SJ, Wan Aida WM, Maskat MY, Mamot S, Ropien J, Mazita Mohd D (2014) Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocoll 42:280–288. https://doi.org/10.1016/j.foodhyd.2014.03.007

    Article  CAS  Google Scholar 

  78. Dodero A, Vicini S, Alloisio M, Castellano M (2019) Sodium alginate solutions: correlation between rheological properties and spinnability. J Mater Sci 54:8034–8046. https://doi.org/10.1007/s10853-019-03446-3

    Article  CAS  Google Scholar 

  79. Benettayeb A, Guibal E, Morsli A, Kessas R (2017) Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II). Chem Eng J 316:704–714. https://doi.org/10.1016/j.cej.2017.01.131

    Article  CAS  Google Scholar 

  80. Lodeiro P, Fuentes A, Herrero R, Sastre de Vicente ME (2008) Cr-III binding by surface polymers in natural biomass: the role of carboxylic groups. Environ Chem 5:355–365. https://doi.org/10.1071/EN08035

    Article  CAS  Google Scholar 

  81. Ahmad R, Mirza A (2017) Adsorption of Pb(II) and Cu(II) by Alginate-Au-Mica bionanocomposite: kinetic, isotherm and thermodynamic studies. Process Saf Environ Prot 109:1–10. https://doi.org/10.1016/j.psep.2017.03.020

    Article  CAS  Google Scholar 

  82. Zeng L, Chen Y, Zhang Q, Guo X, Peng Y, Xiao H, Chen X, Luo J (2015) Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydr Polym 130:333–343. https://doi.org/10.1016/j.carbpol.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  83. Tran HV, Tran LD, Nguyen TN (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng C 30:304–310. https://doi.org/10.1016/j.msec.2009.11.008

    Article  CAS  Google Scholar 

  84. Dinu MV, Dragan ES (2010) Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms. Chem Eng J 160:157–163. https://doi.org/10.1016/j.cej.2010.03.029

    Article  CAS  Google Scholar 

  85. Patale RL, Patravale VB (2011) O, N-carboxymethyl chitosan–zinc complex: a novel chitosan complex with enhanced antimicrobial activity. Carbohydr Polym 85:105–110. https://doi.org/10.1016/j.carbpol.2011.02.001

    Article  CAS  Google Scholar 

  86. Sahin M, Kocak N, Arslan G, Ucan HI (2010) Synthesis of crosslinked chitosan with epichlorohydrin possessing two novel polymeric ligands and its use in metal removal. J Inorg Organomet Polym Mater 21:69–80. https://doi.org/10.1007/s10904-010-9421-2

    Article  CAS  Google Scholar 

  87. Huang C, Chung Y-C, Liou M-R (1996) Adsorption of Cu(II) and Ni(II) by pelletized biopolymer. J Hazard Mater 45:265–277. https://doi.org/10.1016/0304-3894(95)00096-8

    Article  CAS  Google Scholar 

  88. Kayalvizhi K, Alhaji NMI, Saravanakkumar D, Mohamed SB, Kaviyarasu K, Ayeshamariam A, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS (2022) Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – A kinetic and thermodynamic study. Environ Res 203:111814. https://doi.org/10.1016/j.envres.2021.111814

    Article  CAS  PubMed  Google Scholar 

  89. Tolentino MS, Aquino RR, Tuazon MRC, Basilia BA, Llana MJ, Cosico JAMC (2019) Adsorptive removal of Ni2$\mathplus$ ions in wastewater using electrospun cellulose acetate / iron-modified nanozeolite nanostructured membrane. IOP Conf Ser Earth Environ Sci 344:012044. https://doi.org/10.1088/1755-1315/344/1/012044

    Article  Google Scholar 

  90. Barros FCF, Sousa FW, Cavalcante RM, Carvalho TV, Dias FS, Queiroz DC, Vasconcellos LCG, Nascimento RF (2008) Removal of Copper, Nickel and Zinc Ions from Aqueous Solution by Chitosan-8-Hydroxyquinoline Beads. CLEAN – Soil Air Water 36:292–298. https://doi.org/10.1002/clen.200700004

  91. Zhang G, Qu R, Sun C, Ji C, Chen H, Wang C, Niu Y (2008) Adsorption for metal ions of chitosan coated cotton fiber. J Appl Polym Sci 110:2321–2327. https://doi.org/10.1002/app.27515

    Article  CAS  Google Scholar 

  92. Ghaee A, Shariaty-Niassar M, Barzin J, Zarghan A (2012) Adsorption of copper and nickel ions on macroporous chitosan membrane: equilibrium study. Appl Surf Sci 258:7732–7743. https://doi.org/10.1016/j.apsusc.2012.04.131

    Article  CAS  Google Scholar 

  93. Sun X, Peng B, Ji Y, Chen J, Li D (2009) Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE J 55:2062–2069. https://doi.org/10.1002/aic.11797

    Article  CAS  Google Scholar 

  94. Zdujić A, Trivunac K, Pejić B, Vukčević M, Kostić M, Milivojević M (2021) A Comparative Study of Ni (II) Removal from Aqueous Solutions on Ca-Alginate Beads and Alginate-Impregnated Hemp Fibers. Fibers Polym 22:9–18. https://doi.org/10.1007/s12221-021-9814-6

    Article  CAS  Google Scholar 

  95. Lixuan Zeng, Yufei Chen, Qiuyun Zhang, Xingmei Guo, Yanni Peng, Huijuan Xiao, Xiaocheng Chen, Jiwen Luo (2015) Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. 130, 333–343

  96. Zhou L, Wang Y, Liu Z, Huang Q (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002. https://doi.org/10.1016/j.jhazmat.2008.04.078

    Article  CAS  PubMed  Google Scholar 

  97. Hassan M, Naidu R, Du J, Qi F, Ahsan MA, Liu Y (2022) Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions. Int J Biol Macromol 207:826–840. https://doi.org/10.1016/j.ijbiomac.2022.03.159

    Article  CAS  PubMed  Google Scholar 

  98. Li Z, Wu W, Jiang W, Wei G, Li Y, Zhang L (2019) Adsorption of Ni(II) by a thermo-sensitive colloid: methylcellulose/calcium alginate beads. J Water Supply Res Technol-Aqua 68:495–508. https://doi.org/10.2166/aqua.2019.141

    Article  Google Scholar 

  99. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177:962–970. https://doi.org/10.1016/j.jhazmat.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  100. Chen A-H, Yang C-Y, Chen C-Y, Chen C-Y, Chen C-W (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater 163:1068–1075. https://doi.org/10.1016/j.jhazmat.2008.07.073

    Article  CAS  PubMed  Google Scholar 

  101. Adigun OA, Oninla VO, Babarinde NAA, Oyedotun KO, Manyala N (2020) Characterization of sugarcane leaf-biomass and investigation of its efficiency in removing Nickel(II), Chromium(III) and Cobalt(II) ions from polluted water. Surf Interfaces 20:100621. https://doi.org/10.1016/j.surfin.2020.100621

    Article  CAS  Google Scholar 

  102. Wang K, Tao X, Xu J, Yin N (2016) Novel Chitosan–MOF Composite Adsorbent for the Removal of Heavy Metal Ions. Chem Lett 45:1365–1368. https://doi.org/10.1246/cl.160718

    Article  CAS  Google Scholar 

  103. Eser A, Nüket Tirtom V, Aydemir T, Becerik S, Dinçer A (2012) Removal of nickel(II) ions by histidine modified chitosan beads. Chem Eng J 210:590–596. https://doi.org/10.1016/j.cej.2012.09.020

    Article  CAS  Google Scholar 

  104. Boddu VM, Abburi K, Randolph AJ, Smith ED (2008) Removal of Copper (II) and Nickel (II) Ions from Aqueous Solutions by a Composite Chitosan Biosorbent. Sep Sci Technol 43:1365–1381. https://doi.org/10.1080/01496390801940762

    Article  CAS  Google Scholar 

  105. Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82. https://doi.org/10.1016/j.cej.2010.04.030

    Article  CAS  Google Scholar 

  106. Song Q, Wang C, Zhang Z, Gao J (2014) Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan. Sep Sci Technol 49:1235–1243. https://doi.org/10.1080/01496395.2013.872656

    Article  CAS  Google Scholar 

  107. Karamipour A, Khadiv Parsi P, Zahedi P, Moosavian SMA (2020) Using Fe3O4-coated nanofibers based on cellulose acetate/chitosan for adsorption of Cr(VI), Ni(II) and phenol from aqueous solutions. Int J Biol Macromol 154:1132–1139. https://doi.org/10.1016/j.ijbiomac.2019.11.058

    Article  CAS  PubMed  Google Scholar 

  108. Minh VX, Dung KTT, Lan PT, Hanh LTM, Dung NT (2020) Study on Ni(II) adsorption by calcium alginate beads. Vietnam J Chem 58:358–363. https://doi.org/10.1002/vjch.2019000195

    Article  CAS  Google Scholar 

  109. El hotaby W, Bakr AM, Ibrahim HS, Ammar NS, Hani HA, Mostafa AA, (2021) Eco-friendly zeolite/alginate microspheres for Ni ions removal from aqueous solution: kinetic and isotherm study. J Mol Struct 1241:130605. https://doi.org/10.1016/j.molstruc.2021.130605

    Article  CAS  Google Scholar 

  110. Yang F, Liu H, Qu J, Paul Chen J (2011) Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption. Bioresour Technol 102:2821–2828. https://doi.org/10.1016/j.biortech.2010.10.038

    Article  CAS  PubMed  Google Scholar 

  111. Shehzad H, Farooqi ZH, Ahmed E, Sharif A, Din MI, Arshad M, Nisar J, Zhou L, Yun W, Nawaz I, Hadayat M, Shahid K (2020) Fabrication of a novel hybrid biocomposite based on amino-thiocarbamate derivative of alginate/carboxymethyl chitosan/TiO2 for Ni(II) recovery. Int J Biol Macromol 152:380–392. https://doi.org/10.1016/j.ijbiomac.2020.02.259

    Article  CAS  PubMed  Google Scholar 

  112. Long R, Yu Z, Shan M, Feng X, Zhu X, Li X, Wang P (2022) The easy-recoverable 3D Ni/Fe-LDH-SA gel ball encapsulated by sodium alginate is used to remove Ni2+ and Cu2+ in water samples. Colloids Surf Physicochem Eng Asp 634:127942. https://doi.org/10.1016/j.colsurfa.2021.127942

    Article  CAS  Google Scholar 

  113. Y. Vijaya SRP, (2008) Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydr Polym Carbohydr Polym 72:261–271. https://doi.org/10.1016/j.carbpol.2007.08.010

    Article  CAS  Google Scholar 

  114. Shehzad H, Ahmed E, Sharif A, Farooqi ZH, Din MI, Begum R, Liu Z, Zhou L, Ouyang J, Irfan A, Nawaz I (2022) Modified alginate-chitosan-TiO2 composites for adsorptive removal of Ni(II) ions from aqueous medium. Int J Biol Macromol 194:117–127. https://doi.org/10.1016/j.ijbiomac.2021.11.140

    Article  CAS  PubMed  Google Scholar 

  115. Shen W, An Q-D, Xiao Z-Y, Zhai S-R, Hao J-A, Tong Y (2020) Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(II), Ni(II) and Cu(II) from water. Int J Biol Macromol 148:1298–1306. https://doi.org/10.1016/j.ijbiomac.2019.10.105

    Article  CAS  PubMed  Google Scholar 

  116. Córdova BM, Infantas GC, Mayta S, Huamani-Palomino RG, Kock FVC, Montes de Oca J, Valderrama AC (2021) Xanthate-modified alginates for the removal of Pb(II) and Ni(II) from aqueous solutions: a brief analysis of alginate xanthation. Int J Biol Macromol 179:557–566. https://doi.org/10.1016/j.ijbiomac.2021.02.190

    Article  CAS  PubMed  Google Scholar 

  117. Al-Sakkari EG, Abdeldayem OM, Genina EE, Amin L, Bahgat NT, Rene ER, El-Sherbiny IM (2020) New alginate-based interpenetrating polymer networks for water treatment: a response surface methodology based optimization study. Int J Biol Macromol 155:772–785. https://doi.org/10.1016/j.ijbiomac.2020.03.220

    Article  CAS  PubMed  Google Scholar 

  118. Alfaro-Cuevas-Villanueva R, Hidalgo-Vázquez AR, Cortés Penagos C de J, Cortés-Martínez R (2014) Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads. In: Sci. World J. https://www.hindawi.com/journals/tswj/2014/647512/.

  119. Igberase E, Ofomaja A, Osifo PO (2019) Enhanced heavy metal ions adsorption by 4-aminobenzoic acid grafted on chitosan/epichlorohydrin composite: Kinetics, isotherms, thermodynamics and desorption studies. Int J Biol Macromol 123:664–676. https://doi.org/10.1016/j.ijbiomac.2018.11.082

    Article  CAS  PubMed  Google Scholar 

  120. Adane B, Siraj K, Meka N (2015) Kinetic, equilibrium and thermodynamic study of 2-chlorophenol adsorption onto Ricinus communis pericarp activated carbon from aqueous solutions. Green Chem Lett Rev 8:1–12. https://doi.org/10.1080/17518253.2015.1065348

    Article  CAS  Google Scholar 

  121. Wu X, Song Y, Yin P, Xu Q, Yang Z, Xu Y, Liu X, Wang Y, Sun W, Cai H (2022) Fabrication of the composite sepiolite@polyethyleneimine/sodium alginate and its excellent adsorption performance for heavy metal ions. Appl Clay Sci 228:106647. https://doi.org/10.1016/j.clay.2022.106647

    Article  CAS  Google Scholar 

  122. Ren Y, Wei X, Zhang M (2008) Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. J Hazard Mater 158:14–22. https://doi.org/10.1016/j.jhazmat.2008.01.044

    Article  CAS  PubMed  Google Scholar 

  123. Isawi H (2020) Using Zeolite/Polyvinyl alcohol/sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arab J Chem 13:5691–5716. https://doi.org/10.1016/j.arabjc.2020.04.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moumin Aden, Jérôme Husson or Michael Knorr.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2749 KB)

Supplementary file2 (DOCX 2749 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aden, M., Elmi, A., Husson, J. et al. Silica-Supported Alginates From Djiboutian Seaweed as Biomass-Derived Materials for Efficient Adsorption of Ni(II). Chemistry Africa 6, 903–919 (2023). https://doi.org/10.1007/s42250-022-00527-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00527-w

Keywords

Navigation