Skip to main content
Log in

The Molecular and Macromolecular Level of Carbon Nanotube Modification Via Diazonium Chemistry: Emphasis on the 2010s Years

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The present review focusses on the recent progress in the reductive grafting of diazotized big molecules and polymers on carbon nanotubes (CNTs). We briefly summarize the essentials on diazonium synthesis and discuss the CNT physical properties. The different routes for CNT covalent functionalization through diazonium salt interface chemistry are reviewed. The main analytical and spectroscopic techniques used to track carbon nanotube surface modification were cited as well as their advantages and limitations in the light of the information they provide. In this review, the emphasis is on big molecules such as dyes, crown ether, calixarene, cyclodextrin, fullerene and Ru-complex, and biomolecules such as biotin, proteins, and antibodies. The attachment of synthetic polymers to CNT via diazonium chemistry, or by preparing CNT-Polymer nanocomposites through: (1) in situ polymerization (controlled radical polymerization and click chemistry). (2) Oxidative polymerization of conjugated monomers. (3) Grafting onto method by Huisgen 1,3-cycloaddition click reaction and epoxy ring-opening were summarized and discussed. Throughout this review, we reported the recent advances using diazonium salt chemistry in numerous research areas (biomedicine, environment, energy conversion, sensors and actuators, structural composites,…).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from [5])

Fig. 2

(Reproduced from [47] with permission from the Royal Society of Chemistry)

Fig. 3
Fig. 4
Scheme 1
Fig. 5

Adapted from [120] with the permission from American Chemical Society

Fig. 6

adapted from [125] with permission from Georg Thieme Verlag)

Fig. 7

(reproduced from [124] with permission from American Chemical Society)

Fig. 8

(reproduced from [158])

Fig. 9

(Reproduced from [160] with permission from Elsevier)

Fig. 10

Figures (b-f) and (i) are reproduced from [122] with permission from ACS; figure (h) is reproduced from [71] with permission from Elsevier

Fig. 11

(a-b) are reproduced from [122] with permission from ACS; (d) from [71] and (e–g) from [149] are reproduced with permission from Elsevier

Fig. 12

(reproduced from [168] with permission from Elsevier)

Fig. 13

(reproduced from [136] with permission from ACS Publications)

Fig. 14

Reproduced from [173] with permission from ACS

Fig. 15

Reproduced from [146]

Fig. 16

Reproduced from [146] with permission from John Wiley & Sons

Fig. 17
Fig. 18
Fig. 19

Reproduced from [201] with permission from Scientific.Net

Fig. 20

Reproduced from [129] with permission from The Royal Society of Chemistry

Fig. 21

(reproduced from [207] with permission from Elsevier)

Fig. 22

Reproduced from [133] with permission from The Royal Society of Chemistry

Fig. 23

Adapted from [208] with permission from Wiley–VCH

Fig. 24

(Reproduced from [20] with permission from The Royal Society of Chemistry)

Fig. 25

Similar content being viewed by others

References

  1. Smalley RE (1996) Nobel Prize Lecture “Discovering the fullerenes”, 7 December 1996. https://www.nobelprize.org/uploads/2018/06/smalley-lecture.pdf. Accessed 6 Mar 2020

  2. Iijima S (1991) Nature 354:56–58

    CAS  Google Scholar 

  3. Iijima S, Ichihashi T (1993) Nature 363:603–605

    CAS  Google Scholar 

  4. Ajayan PM, Tour JM (2007) Nanotube composites. Nature 447:1066–1068

    CAS  PubMed  Google Scholar 

  5. Chehimi MM, Pinson J, Salmi Z (2013) Carbon nanotubes: surface modification and applications. In: Chehimi MM, Pinson J (eds) Applied surface chemistry of nanomaterials. Nova Science Publishers, Hauppauge, pp 95–143

    Google Scholar 

  6. Jiang D-en, Sumpter BG, Dai S (2006) How do aryl groups attach to a graphene sheet? J Phys Chem B 110:23628–23632

  7. Griess P (1858) Preliminary notice on the influence of nitrous acid on amino nitro- and amino dinitrophenol. Annalen 106:123–125

    Google Scholar 

  8. Heines SV (1958) Peter Griess-discoverer of diazo compounds. J Chem Ed 35:187–191

    CAS  Google Scholar 

  9. Elofson RM (1958) The polarographic reduction of diazotized aromatic amines. Can J Chem 36:1207–1210

    CAS  Google Scholar 

  10. Burstone MS, Weisburger EK (1961) New diazonium components as coupling agents in the demonstration of phosphatases. J Histochem Cytochem 9:301–303

    CAS  PubMed  Google Scholar 

  11. Delamar M, Hitmi R, Pinson J, Saveant JM (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114:5883–5884

    CAS  Google Scholar 

  12. Chehimi MM (ed) (2012) Aryl diazonium salts: new coupling agents in polymer and surface science. Wiley, Weinheim

  13. Bernard MC, Chaussé A, Cabet-Deliry E, Chehimi MM, Pinson J, Podvorica F, Vautrin-Ul C (2003) Organic layers bonded to industrial, coinage, and noble metals through electrochemical reduction of aryldiazonium salts. Chem Mater 15:3450–3462

    CAS  Google Scholar 

  14. Guselnikova O, Postnikov P, Elashnikov R, Trusova M, Kalachyova Y, Libansky M, Barek J, Kolska Z, Švorčík V, Lyutakov O (2017) Surface modification of Au and Ag plasmonic thin films via diazonium chemistry: evaluation of structure and properties. Colloids Surf A 516:274–285

    CAS  Google Scholar 

  15. Hurley BL, McCreery RL (2004) Covalent bonding of organic molecules to Cu and al alloy 2024 T3 surfaces via diazonium ion reduction. J Electrochem Soc 151:B252–B259

    CAS  Google Scholar 

  16. Mooste M, Kibena-Põldsepp E, Marandi M, Matisen L, Sammelselg V, Podvorica FI, Tammeveski K (2018) Surface and electrochemical characterization of aryl films grafted on polycrystalline copper from the diazonium compounds using the rotating disk electrode method. J Electroanal Chem 817:89–100

    CAS  Google Scholar 

  17. Lo M, Diaw AKD, Gningue-Sall D, Aaron J-J, Oturan MA, Chehimi MM (2017) The role of diazonium interface chemistry in the design of high performance polypyrrole-coated flexible ITO sensing electrodes. Electrochem Commun 77:14–18

    CAS  Google Scholar 

  18. Toupin M, Bélanger D (2007) Thermal stability study of aryl modified carbon black by in situ generated diazonium salt. J Phys Chem C 111:5394–5401

    CAS  Google Scholar 

  19. Mahouche Chergui S, Abbas N, Matrab T, Turmine M, Nguyen EB, Losno R, Pinson J, Chehimi MM (2010) Uptake of copper ions by carbon fiber/polymer hybrids prepared by tandem diazonium salt chemistry and in situ atom transfer radical polymerization. Carbon 48:2106–2111

    CAS  Google Scholar 

  20. Wang Y, Meng L, Fan L, Wu G, Ma L, Huang Y (2015) Preparation and properties of carbon nanotube/carbon fiber hybrid reinforcement by a two-step aryl diazonium reaction. RSC Adv 5:44492–44498

    CAS  Google Scholar 

  21. Strano MS, Dyke CA, Usrey ML, Barone PW, Allen MJ, Shan H, Kittrell C, Hauge RH, Tour JM, Smalley RE (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301:1519–1522

    CAS  PubMed  Google Scholar 

  22. De Villeneuve CH, Pinson J, Bernard MC, Allongue P (1997) Electrochemical formation of close-packed phenyl layers on Si (111). J Phys Chem B 101:2415–2420

    Google Scholar 

  23. Assresahegn BD, Ossonon BD, Bélanger D (2018) Graphene nanosheets and polyacrylic acid grafted silicon composite anode for lithium ion batteries. J Power Sources 391:41–50

    CAS  Google Scholar 

  24. Salmi Z, Lamouri A, Decorse P, Jouini M, Boussadi A, Achard J, Gicquel A, Mahouche-Chergui S, Carbonnier B, Chehimi MM (2013) Grafting polymer–protein bioconjugate to boron-doped diamond using aryl diazonium coupling agents. Diamond Relat Mater 40:60–68

    CAS  Google Scholar 

  25. Griffete N, Herbst F, Pinson J, Ammar S, Mangeney C (2011) Preparation of water-soluble magnetic nanocrystals using aryl diazonium salt chemistry. J Am Chem Soc 133:1646–1649

    CAS  PubMed  Google Scholar 

  26. Mousli F, Chaouchi A, Hocine S, Lamouri A, Rei Vilar M, Kadri A, Chehimi MM (2019) Diazonium-modified TiO⁠2/polyaniline core/shell nanoparticles. Structural characterization, interfacial aspects and photocatalytic performances. Appl Surf Sci 465:1078–1095

    CAS  Google Scholar 

  27. Mousli F, Chaouchi A, Jouini M, Maurel F, Kadri A, Chehimi MM (2019) Polyaniline-grafted RuO2–TiO2 heterostructure for the catalysed degradation of methyl orange in darkness. Catalysts 9:578. https://doi.org/10.3390/catal9070578

    Article  CAS  Google Scholar 

  28. Sandomierski M, Strzemiecka B, Chehimi MM, Voelkel A (2016) Reactive diazonium-modified silica fillers for high-performance polymers. Langmuir 32:11646–11654

    CAS  PubMed  Google Scholar 

  29. Jlassi K, Chandran S, Poothanari MA, Benna-Zayani M, Thomas S, Chehimi MM (2016) Clay/polyaniline hybrid through diazonium chemistry: conductive nanofiller with unusual effects on interfacial properties of epoxy nanocomposites. Langmuir 32:3514–3524

    CAS  PubMed  Google Scholar 

  30. Sandomierski M, Strzemiecka B, Grams J, Chehimi MM, Voelkel A (2018) Diazonium-modified zeolite fillers. Effect of diazonium substituent position on the filler surface modification and the mechanical properties of phenolic/zeolite composites. Int J Adhes Adhes 85:157–164

    CAS  Google Scholar 

  31. Hetemi D, Pinson J (2017) Surface functionalisation of polymers. Chem Soc Rev 46:5701–5713

    CAS  PubMed  Google Scholar 

  32. Islam MN, Rahman MR, Haque MM, Huque MM (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos A Appl Sci Manuf 41:192–198

    Google Scholar 

  33. Fioresi F, Vieillard J, Bargougui R, Bouazizi N, Fotsing PN, Woumfo ED, Brun N, Mofaddel N, Le Derf F (2017) Chemical modification of the cocoa shell surface using diazonium salts. J Colloid Interface Sci 494:92–97

    CAS  PubMed  Google Scholar 

  34. Belbekhouche S, Kebe SI, Mahouche-Chergui S, Guerrouache M, Carbonnier B, Jaziri M, Chehimi MM (2017) Aryl diazonium-modified olive waste: a low cost support for the immobilization of nanocatalysts. Colloids Surf A 529:541–549

    CAS  Google Scholar 

  35. Mohamed AA, Salmi Z, Dahoumane SA, Mekki A, Carbonnier B, Chehimi MM (2015) Functionalization of nanomaterials with aryldiazonium salts. Adv Colloid Interface Sci 225:16–36

    CAS  PubMed  Google Scholar 

  36. Toupin M, Bélanger D (2008) Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations. Langmuir 24:1910–1917

    CAS  PubMed  Google Scholar 

  37. Guo DJ, Li HL (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999–1003

    CAS  Google Scholar 

  38. Cui SK, Guo DJ (2009) Highly dispersed Pt nanoparticles immobilized on 1, 4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation. J Colloid Interface Sci 333:300–303

    CAS  PubMed  Google Scholar 

  39. Cao C, Zhang Y, Jiang C, Qi M, Liu G (2017) Advances on aryldiazonium salt chemistry based interfacial fabrication for sensing applications. ACS Appl Mater Interfaces 9:5031–5049

    CAS  PubMed  Google Scholar 

  40. Tour JM, Hudson JL, Krishnamoorti R, Yurelki K, Mitchell CA (2005) Polymerization initiated at the sidewalls of carbon nanotubes, WO/2005/030858, http://www.wipo.int/pctdb/en/wo.jsp?WO=2005030858. Accessed 05 Mar 2020

  41. Dyke CA, Tour JM (2004) Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem A Europ J 10:812–817

  42. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230

    CAS  PubMed  Google Scholar 

  43. Homenick CM, Lawson G, Adronov A (2007) Polymer grafting of carbon nanotubes using living free-radical polymerization. Polym Rev 47:265–290

    CAS  Google Scholar 

  44. Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40:4143–4166

    CAS  PubMed  Google Scholar 

  45. Naqvi STR, Rasheed T, Hussain D, ul Haq MN, Majeed S, Ahme N, Nawaz R (2019) Modification strategies for improving the solubility/dispersion of carbon nanotubes. J Mol Liquids 297:111919

    Google Scholar 

  46. Marsh H, Heintz EA, Rodríguez-Reinoso F (1997) Introduction to carbon technologies. Universidad de Alicante

  47. Ma L, Hart AH, Ozden S, Vajtai R, Ajayan PM (2014) Spiers memorial lecture. Faraday Discuss 173:9–46

    CAS  PubMed  Google Scholar 

  48. Gao X, Liu H, Wang D, Zhang J (2019) Graphdiyne: synthesis, properties, and applications. Chem Soc Rev 48:908–936

    CAS  PubMed  Google Scholar 

  49. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    CAS  PubMed  Google Scholar 

  50. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    CAS  PubMed  Google Scholar 

  51. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703

    CAS  PubMed  Google Scholar 

  52. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    CAS  PubMed  Google Scholar 

  53. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Letter 79:1172–1174

    CAS  Google Scholar 

  54. Kaushik BK, Majumder MK (2015) Carbon nanotube based VLSI interconnects. Springer Briefs Appl Sci Technol. https://doi.org/10.1007/978-81-322-2047-3_2

    Article  Google Scholar 

  55. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    CAS  PubMed  Google Scholar 

  56. Birch ME, Ruda-Eberenz TA, Chai M, Andrews R, Hatfield RL (2013) Properties that influence the specific surface areas of carbon nanotubes and nanofibers. Ann Occup Hyg 57:1148–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    CAS  Google Scholar 

  58. US Reaserch Nanaomaterials. The advance Nanomaterials Provider. https://www.us-nano.com/inc/sdetail/230. Accessed 23 May 2020

  59. Senouci A, Frene J, Zaidi H (1999) Wear mechanism in graphite–copper electrical sliding contact. Wear 225:949–953

    Google Scholar 

  60. Thermal Conductivity of common Materials and Gases: Thermal conductivity of gases, insulation products, aluminum, asphalt, brass, copper, steel and other common materials. The Engineering ToolBox. https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html. Accessed 23 May 2020

  61. Table of electrical resistivity and conductivity. https://www.thoughtco.com/table-of-electrical-resistivity-conductivity-608499. Accessed 5 Mar 2020

  62. Elastic properties and young modulus for some materials. The Engineering ToolBox. Retrieved 2012-01-06. Accessed 31 Oct 2018

  63. Ashford D, Thermoplastics © Chapman & Hall (1997). Accessed 23 May 2020

  64. Ethylene Vinyl Acetate (EVA): MakeItFrom.com. https://www.makeitfrom.com/material-properties/Ethylene-Vinyl-Acetate-EVA. Accessed 23 May 2020

  65. Tensile strength of rubber|Elastomer Research Testing BV. https://ertbv.com/en/rubber-testing/physical…properties/tensile-strength-of-rubber/. Accessed 23 May 2020

  66. Electrical Properties of Plastic Materials, https://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf. Accessed 23 May 2020

  67. Tensile Test of Polyethylene Film: SHIMADZU (Shimadzu Corporation). https://www.shimadzu.com/an/industry/petrochemicalchemical/chem0301006.htm. Accessed 23 May 2020

  68. Pinault M, Pichot V, Khodja H, Launois P, Reynaud C, Mayne-L'Hermite M (2005) Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers. Nano Lett 5:2394–2398

    CAS  PubMed  Google Scholar 

  69. Barney IT, Ganguli S, Roy AK, Mukhopadhyay SM (2012) Improved thermal response in encapsulated phase change materials by nanotube attachment on encapsulating solid. J Nanotechnol Eng Med 3:031005 (6 pages). https://doi.org/10.1115/1.4007327

  70. Xie XL, Maia YW, Zhou XP (2005) Dispersion and alignement of carbon nanotubes in polymer matrix: a review. Mater Sci Eng 49:89–112

    Google Scholar 

  71. Bensghaïer A, Forro K, Seydou M, Lamouri A, Mičušik M, Omastová M, Beji M, Chehimi MM (2018) Dye diazonium-modified multiwalled carbon nanotubes: light harvesters for elastomeric optothermal actuators. Vacuum 155:178–184

    Google Scholar 

  72. Bharti M, Singh A, Samanta S, Aswal DK (2018) Conductive polymers for thermoelectric power generation. Prog Mater Sci 93:270–310

    CAS  Google Scholar 

  73. Felpin FX, Sengupta S (2019) Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chem Soc Rev 48:1150–1193

    CAS  PubMed  Google Scholar 

  74. Kindt S, Heinrich MR (2016) Recent advances in Meerwein arylation chemistry. Synthesis 48:1597–1606

    CAS  Google Scholar 

  75. Koziakov D, Wu G, von Wangelin AJ (2018) Aromatic substitutions of arenediazonium salts via metal catalysis, single electron transfer, and weak base mediation. Org Biomol Chem 16:4942–4953

    CAS  PubMed  Google Scholar 

  76. Wang CS, Dixneuf PH, Soulé JF (2018) Photoredox catalysis for building C-C bonds from C (sp2)–H bonds. Chem Rev 118:7532–7585

    CAS  PubMed  Google Scholar 

  77. He L, Qiu G, Gao Y, Wu J (2014) Removal of amino groups from anilines through diazonium salt-based reactions. Org Biomol Chem 12:6965–6971

    CAS  PubMed  Google Scholar 

  78. Filimonov VD, Trusova M, Postnikov P, Krasnokutskaya EA, Lee YM, Hwang HY, Hyunuk K, Chi KW (2008) Unusually stable, versatile, and pure arenediazonium tosylates: their preparation, structures, and synthetic applicability. Org Lett 10:3961–3964

    CAS  PubMed  Google Scholar 

  79. Trusova ME, Kutonova KV, Kurtukov VV, Filimonov VD, Postnikov PS (2016) Arenediazonium salts transformations in water media: coming round to origins. Resour Efficient Technol 2:36–42

    Google Scholar 

  80. Filimonov VD, Krasnokutskaya EA, Kassanova AZ, Fedorova VA, Stankevich KS, Naumov NG, Bondarev AA, Kataeva VA (2019) Synthesis, structure, and synthetic potential of arenediazonium trifluoromethanesulfonates as stable and safe diazonium salts. Eur J Org Chem:665–674

  81. Sheng M, Frurip D, Gorman D (2015) Reactive chemical hazards of diazonium salts. J Loss Preven Proc Ind 38:114–118

    CAS  Google Scholar 

  82. Ullrich R, Grewer T (1993) Decomposition of aromatic diazonium compounds. Thermochim Acta 225:201–211

    CAS  Google Scholar 

  83. Recent examples can be found in the Sigma catalogue: Variamine Blue RT Salt (CAS Number 4477-28-5), Variamine blue B salt (CAS Number 101-69-9), Fast Garnet GBC sulfate salt (CAS Number 101-89-3)

  84. Zollinger H (1994) Diazo chemistry. Weinheim, New York

  85. Kaupp G, Herrmann A, Schmeyers J (2002) Waste-free chemistry of diazonium salts and benign separation of coupling products in solid salt reactions. Chem A Eur J 8:1395–1406

    CAS  Google Scholar 

  86. Anderson LC, Steegly JW (1954) The absorption spectra of some p-aminoaryldiazonium derivatives. J Am Chem Soc 76:20–5144

    Google Scholar 

  87. Whetsel KB, Hawkins GF, Johnson FE (1956) The infrared spectra of aryldiazonium salts. J Am Chem Soc 78:3360–3363

    CAS  Google Scholar 

  88. Cygler M, Przybylska M (1982) The crystal structure of benzenediazonium tetrafluoroborate, C6H5N2 + •BF4 − 1. Can J Chem 60:2852–2855

    CAS  Google Scholar 

  89. Olah GA, Tolgyesi WS (1961) Aryldiazonium tetrachloroborates and tetrabromoborates. J Org Chem 26:2319–2323

    CAS  Google Scholar 

  90. Polynova TN, Bokii NG, Porai-Koshits MA (1965) Structures of double diazonium salt crystals. J Struct Chem 6:841–849

    Google Scholar 

  91. Kazitsyna LA, Reutov OA, Buchkovskii ZF, Zhur FK (1960) Russ J Phys Chem 404

  92. Kazitsyna LA, Reutov OA, Buchkovskii ZF (1961) Zhur Obshch Khim 31:2065

    CAS  Google Scholar 

  93. Kazitsyna LA, Reutov OA, Buchkovskii ZF, Akad Nauk IZV (1960) SSSR, Otd.Khim.Nauk, p 1523

  94. Belov BI, Kozlov VV (1963) Advances in the chemistry of aromatic diazonium compounds. Russ Chem Rev 32:59–75

    Google Scholar 

  95. Bigelow LA (1941) o-Bromotoluene. Org Synt 1:136–137

    Google Scholar 

  96. Nielsen MA, Nielsen MK, Pittelkow T (2004) Scale-up and safety evaluation of a sandmeyer reaction. Org Proc Res Dev 8:1059–1064

    CAS  Google Scholar 

  97. Zyk NV, Nesterov EE, Khlobystov AN, Zefirov NS (1999) Nitrosation of arenes with nitrosonium ethyl sulfate. Russ Chem bulletin 48:506–509

    CAS  Google Scholar 

  98. Zarei A, Hajipour AR, Khazdooz L, Mirjalili BF, Chermahini AN (2009) Rapid and efficient diazotization and diazo coupling reactions on silica sulfuric acid under solvent-free conditions. Dyes Pigm 81:240–244

    CAS  Google Scholar 

  99. Qzh Zhang, Zhang SH, Liu X, Zhang J (2001) Synthesis of solid arenediazonium nitrates under nanoqueous condition. Synth Commun 31:1243–1247

    Google Scholar 

  100. Qzh Zhang, Zhang SH, Liu X, Zhang J (2001) Synthesis of aryl diazonium nitrates from aryl ureas and dioxane-NO2 adduct. Synth Commun 31:329–334

    Google Scholar 

  101. Filimonov VD, Semenischeva NI, Krasnokutskaya EA, Tretyakov AN, Hwang HY, Chi KW (2008) Sulfonic acid based cation-exchange resin: a novel proton source for one-pot diazotization-iodination of aromatic amines in water. Synthesis 02:185–187

    Google Scholar 

  102. Kazycina LA, Dzyegilenko NB (1967) Structure of diazonium salts containing carboxylic acid as anion. Russ J Org Chem 4:2153

    Google Scholar 

  103. Colas C, Goeldner M (1999) An efficient procedure for the synthesis of crystalline aryldiazonium trifluoroacetates-synthetic applications. Europ J Organic Chem 6:1357–1366

    Google Scholar 

  104. Barbero M, Crisma M, Degani I, Fochi R, Perracino P (1998) New dry arenediazonium salts, stabilized to an exceptionally high degree by the anion of o-benzenedisulfonimide. Synthesis 08:1171–1175

    Google Scholar 

  105. Barbero M, Degani I, Dughera S, Fochi R (1999) Halodediazoniations of dry arenediazonium o-benzenedisulfonimides in the presence or absence of an electron transfer catalyst. Easy general procedures to prepare aryl chlorides, bromides, and iodides. J Org Chem 64(10):3448–3453

  106. Barbero M, Cadamuro S, Dughera S (2008) Palladium-catalyzed cross-coupling alkylation of arenediazonium o-benzenedisulfonimides. Synthesis 3:474–478

    Google Scholar 

  107. Vajpayee V, Moon ME, Lee S, Ravikumar S, Kim H, Ahn B, Chi KW (2013) Halogenation and DNA cleavage via thermally stable arenediazonium camphorsulfonate salts. Tetrahedron 69:3511–3517

    CAS  Google Scholar 

  108. Picherit C, Wagner F, Uguen D (2004) The sequel to a carbocyclic nucleoside synthesis: a divergent access to both arenediazonium ions and aryl triflates. Tetrahedron Lett 45:2579–2583

    CAS  Google Scholar 

  109. Hirschberg ME, Ignat&apos Ev NV, Wenda Frohn HJ, Willner H (2012) Aryldiazonium bis(trifluoromethyl)imides. J Fluor Chem 135:183–186

  110. Bondarev AA, Naumov EV, Kassanova AZ, Krasnokutskaya EA, Stankevich KS, Filimonov VD (2019) First study of the thermal and storage stability of arenediazonium triflates comparing to 4-nitrobenzenediazonium tosylate and tetrafluoroborate by calorimetric methods. Org Proc Res Dev 23:2405–2415

    CAS  Google Scholar 

  111. Orefuwa SA, Ravanbakhsh M, Neal SN, King JB, Mohamed AA (2014) Robust organometallic gold nanoparticles. Organometallics 33:439–442

    CAS  Google Scholar 

  112. Overton AT, Mohamed AA (2012) Gold (III) diazonium complexes for electrochemical reductive grafting. Inorg Chem 51:5500–5502

    CAS  PubMed  Google Scholar 

  113. Mohamed AA, Neal SN, Atallah B, AlBab ND, Alawadhi HA, Pajouhafsar Y, Abdou HE, Workie B, Sahle-Demessie E, Han C, Monge M, Lopez-de-Luzuriaga JM, Reibenspies JH, Chehimi MM (2018) Synthesis of gold organometallics at the nanoscale. J Organomet Chem 877:1–11

    CAS  Google Scholar 

  114. Jlassi K, Zavahir S, Kasak P, Krupa I, Mohamed AA, Chehimi MM (2018) Emerging clay-aryl-gold nanohybrids for efficient electrocatalytic proton reduction. Energy Convers Manage 168:170–177

    CAS  Google Scholar 

  115. Almheiri S, Ahmad AA, Le Droumaguet B, Pires R, Mohamed AA, Chehimi MM (2020) Developed latent fingerprints via aryldiazonium tetrachloroaurate salts on copper surfaces: an XPS study. Langmuir 36:74–83

    CAS  PubMed  Google Scholar 

  116. Bis(9,10-dioxo-9,10-dihydroanthracene-1-diazonium) zinc(ii) chloride (#S285714)

  117. Examples of commercially available diazonium salts: 3,5-Dichlorophenyldiazonium tetrafluoroborate (CAS 350-67-4), 4-Methoxybenzenediazonium tetrafluoroborate (CAS 459-64-3), 4-Nitrobenzenediazonium tetrafluoroborate (CAS 456-27-9)

  118. Rabti A, Hannachi A, Maghraoui-Meherzi H, Raouafi N (2019) Ferrocene-functionalized carbon nanotubes: an adsorbent for rhodamine B. Chem Afr 2:113–122

    CAS  Google Scholar 

  119. Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34:429–439

    CAS  PubMed  Google Scholar 

  120. Doppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S (2007) Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts. Chem Mater 19:4570–4575

    CAS  Google Scholar 

  121. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chemi Soc 123:6536–6542

    CAS  Google Scholar 

  122. Bensghaïer A, Lau Truong S, Seydou M, Lamouri A, Leroy E, Mičušik M, Forro K, Beji M, Pinson J, Omastová MA, Chehimi MM (2017) Efficient covalent modification of multiwalled carbon nanotubes with diazotized dyes in water at room temperature. Langmuir 33:6677–6690

    PubMed  Google Scholar 

  123. Doyle CD, Rocha JDR, Weisman RB, Tour JM (2008) Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts. J Am Chem Soc 130:6795–6800

    CAS  PubMed  Google Scholar 

  124. Hudson JL, Jian H, Leonard AD, Stephenson JJ, Tour JM (2006) Triazenes as a stable diazonium source for use in functionalizing carbon nanotubes in aqueous suspensions. Chem Mater 18:2766–2770

    CAS  Google Scholar 

  125. Dyke CA, Stewart MP, Maya F, Tour JM (2004) Diazonium-based functionalization of carbon nanotubes. XPS and GC-MS analysis and mechanistic implications. Review. Synlett 01:155

  126. Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13:3823–3824

    CAS  Google Scholar 

  127. Martinez-Rubi Y, Gonzalez-Dominguez JM, Ansón-Casaos A, Kingston CT, Daroszewska M, Barnes M, Hubert P, Cattin C, Martinez MT, Simard B (2012) Tailored SWCNT functionalization optimized for compatibility with epoxy matrices. Nanotechnology 23:285701

    CAS  PubMed  Google Scholar 

  128. Chiang LY, Anandakathir R, Hauck TS, Lee L, Canteenwala T, Padmawar PA, Pritzker K, Bruno FF, Samuelson LA (2010) Synthesis of covalently attached hexadecaanilines on carbon nanotubes: toward electronic nanocarbon preparation. Nanoscale 2:535–541

    CAS  PubMed  Google Scholar 

  129. An L, Fu Q, Lu C, Liu J (2004) A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J Am Chem Soc 126:10520–10521

    CAS  PubMed  Google Scholar 

  130. Schmidt G, Gallon S, Esnouf S, Bourgoin JP, Chenevier P (2009) Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences. Chem Eur J 15:2101–2110

    CAS  PubMed  Google Scholar 

  131. Bhalchandra A, KakadeVijayamohanan PK (2008) An efficient route towards the covalent functionalization of single walled carbon nanotubes. Appl Surf Sci 254:4936–4943

    Google Scholar 

  132. Pandurangappa M, Ramakrishnappa T (2010) Microwave-assisted functionalization of glassy carbon spheres: electrochemical and mechanistic studies. J Solid State Electrochem 14:687–695

    CAS  Google Scholar 

  133. Karousis N, Economopoulos SP, Iizumi Y, Okazaki T, Liu Z, Suenaga K, Tagmatarchis N (2010) Microwave assisted covalent functionalization of C60@SWCNT peapods. Chem Commun 46:9110–9112

    CAS  Google Scholar 

  134. Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3:1215–1218

    CAS  Google Scholar 

  135. Gohier A, Nekelson F, Helezen M, Jegou P, Deniau G, Palacin S, Mayne-L’Hermite M (2011) Tunable grafting of functional polymers onto carbon nanotubes using diazonium chemistry in aqueous media. J Mater Chem 21:4615–4622

    CAS  Google Scholar 

  136. Pan Y, Tong B, Shi J, Zhao W, Shen J, Zhi J, Dong Y (2010) Fabrication, characterization, and optoelectronic properties of layer-by-layer films based on terpyridine-modified MWCNTs and ruthenium (III) ions. J Phys Chem C 114:8040–8047

    CAS  Google Scholar 

  137. Bhakta AK, Detriche S, Martis P, Mascarenhas RJ, Delhalle J, Mekhalif Z (2017) Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles. J Mater Sci 52:9648–9660

    CAS  Google Scholar 

  138. Mangeney C, Qin Z, Dahoumane SA, Adenier A, Herbst F, Boudou JP, Pinson J, Chehimi MM (2008) Electroless ultrasonic functionalization of diamond nanoparticles using aryl diazonium salts. Diamond Relat Mater 17:1881–1887

    CAS  Google Scholar 

  139. Mirkhalaf F, Mason TJ, Morgan DJ, Saez V (2011) Frequency effects on the surface coverage of nitrophenyl films ultrasonically grafted onto indium tin oxide. Langmuir 27:1853–1858

    CAS  PubMed  Google Scholar 

  140. Halili J, Salihu F, Berisha AR (2018) Covalent attachment of phenyl and carboxyphenyl layers derived from diazonium salts onto activated charcoal for the adsorption of pesticides. Macedonian J Chem Chem Eng 37:71–78

    CAS  Google Scholar 

  141. Fernandez-Bravo A, Sivakumar P, Melikechi N, Mohamed AA (2017) Femtosecond laser ablation synthesis of aryl functional group substituted gold nanoparticles. J Nanosci Nanotechnol 17:2852–2856

    CAS  PubMed  Google Scholar 

  142. Unwin PR, Güell AG, Zhang G (2016) Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Acc Chem Res 49:2041–2048

    CAS  PubMed  Google Scholar 

  143. Jlassi K, Krupa I, Chehimi M (2017) Overview: clay preparation, properties, modification. In: Jlassi K, Chehimi MM, Thomas S (eds) Clay-polymer nanocomposites. Elsevier, Oxford, pp 1–28

    Google Scholar 

  144. Brundle CR, Evans CA, Wilson S (1992) Encyclopedia of materials characterization. Butterworth-Heinemann, Stoneham

    Google Scholar 

  145. Kirkland AI, Hutchison JL (eds) (2007) Nanocharacterisation. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  146. Bensghaïer A, Salmi Z, Le Droumaguet B, Mekki A, Mohamed AA, Beji M, Chehimi MM (2016) Diazonium interface chemistry and click polymerization: a novel route for carbon nanotube-polytriazole nanocomposites. Surf Interface Anal 48:509–513

    Google Scholar 

  147. Speyer RF (Ed) (1994) Thermal analysis of materials. Marcel Dekker, New York

  148. Schirowski M, Hauke F, Hirsch A (2019) Controlling the degree of functionalization: in-depth quantification and side-product analysis of diazonium chemistry on SWCNTs. Chem Eur J 25:12761–12768

    CAS  PubMed  Google Scholar 

  149. Bensghaïer A, Kaur N, Fourati N, Zerrouki C, Lamouri A, Beji M, Mahajan A, Chehimi MM (2018) Diazonium chemistry for making highly selective and sensitive CNT-Neutral Red hybrid-based chemiresistive acetone sensors. Vacuum 155:656–661

    Google Scholar 

  150. Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241

    CAS  Google Scholar 

  151. Li Z, Gao B, Chen GZ, Mokaya R, Sotiropoulos S, Puma GL (2011) Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl Catal B Environ 110:50–57

    CAS  Google Scholar 

  152. Högele A, Galland C, Winger M, Imamoğlu A (2008) Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys Rev Lett 100:217401

    PubMed  Google Scholar 

  153. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Inrichs K, Roodenko K, Rappich J, Chehimi MM, Pinson J (2012) Analytical methods for the characterization of aryl layers. In: Chehimi MM (ed) Aryl diazonium salts. Wiley, Weiheim, pp 71–101

  155. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J Electroanal Chem 541:23–29

    CAS  Google Scholar 

  156. Alabrese GS, Buchanan RM, Wrighton MS (1983) Mediated electrochemical reduction of oxygen to hydrogen peroxide via a surface-confined naphthoquinone reagent and the mediated electrochemical reduction of a naphthoquinone redox reagent anchored to high surface area oxides. J Am Chem Soc 105:5594–5600

    Google Scholar 

  157. Allongue P, Delamar M, Desbat B, Fagebaume O, Hitmi R, Pinson J, Savéant JM (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207

    CAS  Google Scholar 

  158. Banks CE, Wildgoose GG, Heald CGR, Compton RG (2005) Oxygen reduction catalysis at anthraquinone centres molecularly wired via carbon nanotubes. J Iran Chem Soc 2:60–64

    CAS  Google Scholar 

  159. Sadowska K, Roberts KP, Wiser R, Biernat JF, Jabłonowska E, Bilewicz R (2009) Synthesis, characterization, and electrochemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone. Carbon 47:1501–1510

    CAS  Google Scholar 

  160. Lipińska ME, Rebelo SL, Pereira MFR, Figueiredo JL, Freire C (2013) Photoactive Zn (II) Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages. Mater Chem Phys 143:296–304

    Google Scholar 

  161. Gómez-Anquela C, Revenga-Parra M, Abad JM, Marín AG, Pau JL, Pariente F, Piqueras J, Lorenzo E (2014) Electrografting of N’, N’-dimethylphenothiazin-5-ium-3, 7-diamine (Azure A) diazonium salt forming electrocatalytic organic films on gold or graphene oxide gold hybrid electrodes. Electrochim Acta 116:59–68

    Google Scholar 

  162. Loïc BD, Blum J (2010) NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt. Electrochem Commun 12:1398–1402

    Google Scholar 

  163. Jakubiak J, Allonas X, Fouassier JP, Sionkowska A, Andrzejewska E, Linden LÅ, Rabek JF (2003) Camphorquinone–amines photoinitating systems for the initiation of free radical polymerization. Polymer 44:5219–5226

    CAS  Google Scholar 

  164. Guptha RR (1988) Phenothiazines and 1,4-bensothiazines chemical and biological aspects. Elsevier, Oxford

    Google Scholar 

  165. Kobayashi H, Takahashi M, Kotani M (2005) Enhanced coloration of a methylene blue film on fused quartz by mechanical brushing and bleaching by solvent vapor. Chem Phys Lett 407:419–422

    CAS  Google Scholar 

  166. Guo K, Chen X, Freguia S, Donose BC (2013) Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems. Biosens Bioelectron 47:184–189

    CAS  PubMed  Google Scholar 

  167. Fages M (2015) Study of the covalent grafting of dyes for the design of an optode for pH measurement. PhD Thesis, Université Paris-Saclay, France

  168. Yang L, Xu Y, Wang X, Zhu J, Zhang R, He P, Fang Y (2011) The application of β-cyclodextrin derivative functionalized aligned carbon nanotubes for electrochemically DNA sensing via host–guest recognition. Anal Chim Acta 689:39–46

    CAS  PubMed  Google Scholar 

  169. Khazaei A, Rad MNS, Borazjani MK, Saednia S, Soudbar D (2011) Functionalization of single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. Synlett 2145–2150

  170. Salmi Z, Gam-Derouich S, Mahouche-Chergui S, Turmine M, Chehimi M (2012) On the interfacial chemistry of aryl diazonium compounds in polymer science. Chem Pap 66:369–391

    CAS  Google Scholar 

  171. Mahouche Chergui S, Ledebt A, Mammeri F, Herbst F, Carbonnier B, Ben Romdhane H, Delamar M, Chehimi MM (2010) Hairy carbon nanotube@nano-pd heterostructures: design, characterization, and application in Suzuki C–C coupling reaction. Langmuir 26:16115–16121

    CAS  PubMed  Google Scholar 

  172. Golas PL, Matyjaszewski K (2007) Click chemistry and ATRP: a beneficial union for the preparation of functional materials. QSAR Comb Sci 26:1116–1134

    CAS  Google Scholar 

  173. Ahlquist M, Fokin VV (2007) Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics 26:4389–4391

    CAS  Google Scholar 

  174. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angewandte Chem Int Ed 40:2004–2021

    CAS  Google Scholar 

  175. Evans RA (2007) The rise of azide-alkyne 1, 3-dipolar ‘click’ cycloaddition and its application to polymer science and surface modification. Aust J Chem 60:384–395

    CAS  Google Scholar 

  176. Fleischmann S, Hinrichs K, Oertel U, Reichelt S, Eichhorn KJ, Voit B (2008) Modification of polymer surfaces by click chemistry. Macromol Rapid Commun 29:1177–1185

  177. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1:17–36

  178. Barbey R, Perrier S (2013) A facile route to functional hyperbranched polymers by combining reversible addition–fragmentation chain transfer polymerization, thiol–yne chemistry, and post-polymerization modification strategies. ACS Macro Lett 2:366–370

  179. Glassner M, Oehlenschlaeger KK, Welle A, Bruns M, Barner-Kowollik C (2013) Polymer surface patterning via Diels-Alder trapping of photo-generated thioaldehydes. Chem Commun 49:633–635

    CAS  Google Scholar 

  180. Anaya O, Haddane A, Drockenmuller E, Abdelhedi-Miladi I, Ben Romdhane H (2019) Poly(1,2,3-triazolium imide)s obtained through AA + BB click polyaddition. Chem Afr 2:713–721

    CAS  Google Scholar 

  181. Krishnakumar B, Sanka RP, Binder WH, Parthasarthy V, Rana S, Karak N (2019) Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers. Chem Eng J 385:123820

    Google Scholar 

  182. Salmi Z, Epape C, Mahouche-Chergui S, Carbonnier B, Omastová M, Chehimi MM (2013) Multiwalled carbon nanotube-clicked poly (4-vinyl pyridine) as a hairy platform for the immobilization of gold nanoparticles. J Colloid Sci Biotechnol 2:53–61

    CAS  Google Scholar 

  183. Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288

    CAS  PubMed  Google Scholar 

  184. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    CAS  Google Scholar 

  185. Matyjaszewski K, Gnanou Y, Leibler L (eds) (2007) Macromolecular engineering. precise synthesis, materials properties, applications. Wiley, Weinheim

  186. Atyjaszewski K, Davis TP (eds) (2002) Handbook of radical polymerization. Wiley, Hoboken

  187. https://www.researchgate.net/figure/The-basic-components-of-a-typical-ATRP-polymerization_fig2_237669845. Accessed 5 Mar 2020

  188. Atom Transfer Radical Polymerization (ATRP) Matyjaszewski Polymer Group. https://www.cmu.edu/maty/chem/fundamentals-atrp/atrp.html. Carnegie Mellon University. Accessed 5 Mar 2020

  189. Matrab T, Chancolon J, Mayne-L’Hermite M, Rouzaud JN, Deniau G, Boudou JP, Chehimi MM, Delamar M (2006) Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts: a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids Surf A 287:217–221

    CAS  Google Scholar 

  190. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TP, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition—fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    CAS  Google Scholar 

  191. McCormick C, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc Chem Res 37:312–325

    CAS  Google Scholar 

  192. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410

    CAS  Google Scholar 

  193. Zhang H (2013) Controlled/“living” radical precipitation polymerization: a versatile polymerization technique for advanced functional polymers. Eur Polym J 49:579–600

    CAS  Google Scholar 

  194. Wang GJ, Huang SZ, Wang Y, Liu L, Qiu J, Li Y (2007) Synthesis of water-soluble single-walled carbon nanotubes by RAFT polymerization. Polymer 48:728–733

    CAS  Google Scholar 

  195. Polymer Properties Database. http://polymerdatabase.com/polymer%20chemistry/anionic%20polymerization.html. Accessed 5 Mar 2020

  196. Tour JM, Hudson JL, Krishnamoorti R, Yurelki K, Mitchell CA (2005) Polymerization initiated at the sidewalls of carbon nanotubes. Patent WO/2005/030858

  197. Higashimura H, Kobayashi S (2016) Oxidative polymerization in encyclopedia of polymer science and technology, 4th edition. Mark HF (Editor), 2016. https://doi.org/10.1002/0471440264.pst226.pub2

  198. Santos LM, Ghilane J, Fave C, Lacaze P-C, Randriamahazaka H, Abrantes LM, Lacroix J-C (2008) Electrografting polyaniline on carbon through the electroreduction of diazonium salts and the electrochemical polymerization of aniline. J Phys Chem C 112:16103–16109

    CAS  Google Scholar 

  199. Mekki A, Samanta S, Singh A, Salmi Z, Mahmoud R, Chehimi MM, Aswal DK (2014) Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts. J Colloid Interface Sci 418:185–192

    CAS  PubMed  Google Scholar 

  200. Pilan L, Raicopol M, Pruna A, Branzoi V (2012) Polyaniline/carbon nanotube composite films electrosynthesis through diazonium salts electroreduction and electrochemical polymerization. Surf Interface Anal 44:1198–1202

    CAS  Google Scholar 

  201. Pilan L, Raicopol M, Ioniţă M (2012) Fabrication of polyaniline/carbon nanotubes composites using carbon nanotubes films obtained by electrophoretic deposition. In: Key engineering materials, vol 507. Trans Tech Publications Ltd, pp 113–117

  202. Stockhausen V, Ghilane J, Martin P, Trippé-Allard G, Randriamahazaka H, Lacroix JC (2009) Grafting oligothiophenes on surfaces by diazonium electroreduction: a step toward ultrathin junction with well-defined metal/oligomer interface. J Am Chem Soc 131:14920–14927

    CAS  PubMed  Google Scholar 

  203. Villemin E, Lemarque B, Vũ TT, Nguyen VQ, Trippé-Allard G, Martin P, Lacaze PC, Lacroix JC (2019) Improved adhesion of poly(3, 4-ethylenedioxythiophene)(PEDOT) thin film to solid substrates using electrografted promoters and application to efficient nanoplasmonic devices. Synth Met 248:45–52

    CAS  Google Scholar 

  204. Jacques A, Chehimi MM, Poleunis C, Delcorte A, Delhalle J, Mekhalif Z (2016) Grafting of 4-pyrrolyphenyldiazonium in situ generated on NiTi, an adhesion promoter for pyrrole electropolymerisation? Electrochim Acta 211:879–890

    CAS  Google Scholar 

  205. Jacques A, Saad A, Chehimi MM, Poleunis C, Delcorte A, Delhalle J, Mekhalif Z (2018) Nitinol modified by In situ generated diazonium salts as adhesion promoters for photopolymerized pyrrole. ChemistrySelect 3:11800–11808

    CAS  Google Scholar 

  206. Wu W, Tsarevsky NV, Hudson JL, Tour JM, Matyjaszewski K, Kowalewski T (2007) Hairy” single-walled carbon nanotubes prepared by atom transfer radical polymerization. Small 10:1803–1810

    Google Scholar 

  207. Mackiewicz N, Bark T, Cao B, Delaire JA, Riehl D, Ling WL, Foillard S, Doris E (2011) Fullerene-functionalized carbon nanotubes as improved optical limiting devices. Carbon 49:3998–4003

    CAS  Google Scholar 

  208. Clément P, Trinchera P, Cervantes-Salguero K, Ye Q, Jones CR, Palma M (2019) A one-step chemical strategy for the formation of carbon nanotube junctions in aqueous solution: reaction of DNA-wrapped carbon nanotubes with diazonium salts. ChemPlusChem 84:1235–1238

    PubMed  Google Scholar 

  209. Mathias JP, Fraser Stoddart J (1992) Constructing a molecular LEGO set. Chem Soc Rev 21:215–225

    CAS  Google Scholar 

  210. He D, Zhang J, Saba J, Yuan J, Miomandre F, Bai J (2013) Carbon fiber and nano/micro hybrid structures and their interface in advanced composites. In: Pinson J, Chehimi MM (eds) Applied surface chemistry of nanomaterials. Nova Science Publishers, Hauppauge, pp 319–345

  211. Liu YT, Wu GP, Lu CX (2014) Grafting of carbon nanotubes onto carbon fiber surfaces by step-wise reduction of in situ generated diazonium salts for enhancing carbon/epoxy interfaces. Mater Lett 134:75–79

    CAS  Google Scholar 

  212. Li W, Dichiara A, Zha J, Su Z, Bai J (2014) On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos Sci Technol 103:36–43

  213. Yuan J, Yao S, Li W, Sylvestre A, Bai J (2017) Anisotropic percolation of SiC–carbon nanotube hybrids: a new route toward thermally conductive high-k polymer composites. J Phys Chem C 121:12063–12070

    CAS  Google Scholar 

  214. Guselnikova O, Postnikov P, Marque SRA, Švorčík V, Lyutakov O (2019) Beyond common analytical limits of radicals detection using the functional SERS substrates. Sens Actuat B 300:127015. https://doi.org/10.1016/j.snb.2019.127015

    Article  CAS  Google Scholar 

  215. Rodriguez RD, Khalelov A, Postnikov PS, Lipovka A, Dorozhko E, Amin I, Murastov GV, Chen JJ, Sheng W, Trusova ME, Chehimi MM, Sheremet E (2020) Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics. Mater Horiz 7:1030–1041

    CAS  Google Scholar 

  216. Hetemi D, Noël V, Pinson J (2020) Grafting of diazonium salts on surfaces: application to biosensors. Biosensors 10:4. https://doi.org/10.3390/bios10010004

    Article  CAS  PubMed Central  Google Scholar 

  217. Hamouma O, Oukil D, Omastová M, Chehimi MM (2018) Flexible paper@carbon nanotube@ polypyrrole composites: The combined pivotal roles of diazonium chemistry and sonochemical polymerization. Colloids Surf A 538:350–360

  218. Hamouma O, Kaur N, Oukil D, Mahajan A, Chehimi MM (2019) Paper strips coated with polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing. Synth Met 258:116223. https://doi.org/10.1016/j.synthmet.2019.116223

    Article  CAS  Google Scholar 

  219. Lo M, Seydou M, Bensghaïer A, Pires R, Gningue-Sall D, Aaron JJ, Mekhalif Z, Delhalle J, Chehimi MM (2020) Polypyrrole-wrapped carbon nanotube composite films coated on diazonium-modified flexible ITO sheets for the electroanalysis of heavy metal ions. Sensors 20:580. https://doi.org/10.3390/s20030580

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Campus France for financial support through PHC Stefanik project DARLIN’ (no. 31785SL) and provision of PROFAS B + fellowship to FM. AB is indebted to the Tunisian Ministry of Higher Education for the provision of a Bourse d’Alternance scholarship and for partial support from NATO (CATALTEX SfP Project no. 984842).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asma Bensghaïer or Mohamed M. Chehimi.

Ethics declarations

Conflict of interest

The Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensghaïer, A., Mousli, F., Lamouri, A. et al. The Molecular and Macromolecular Level of Carbon Nanotube Modification Via Diazonium Chemistry: Emphasis on the 2010s Years. Chemistry Africa 3, 535–569 (2020). https://doi.org/10.1007/s42250-020-00144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00144-5

Keywords

Navigation