Skip to main content
Log in

TiO2-Mica 450 composite for photocatalytic degradation of methylene blue using UV irradiation

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The photo-degradation of methylene blue (MB) dye solution is studied under UV light irradiation using a TiO2-Mica composite calcined at 450 °C (TiO2-M 450). X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), and UV spectroscopy are used to study the photocatalyst after it is made. XRD shows TiO2 nanoparticles (NPs) are in the anatase and rutile phases. MB degradation is evaluated by different parameters, including the concentration of MB dye, pH, the amount of photocatalyst used, and the effect of the oxidant (hydrogen peroxide, H2O2). Under moderate exposure to UV light, the TiO2-M 450 composite can remove approximately 99.2% of MB dye (1.0 × 10−4 M) for 80 min. The optimal amount of TiO2-M 450 composite is 5.0 g L−1, corresponding to 2.0 g L−1 of TiO2 NPs. MB dyes can be treated with a simple, successful, and effective process. The nanocomposite is thought to be a good candidate for a photocatalyst that could be used to clean up the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. H.I. Adil, M.R. Thalji, S.A. Yasin, I.A. Saeed, M.A. Assiri, K.F. Chong, G.A.M. Ali, Metal–organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions. RSC Adv 12, 1433–1450 (2022)

    Article  CAS  Google Scholar 

  2. K. Abbass, M.Z. Qasim, H. Song, M. Murshed, H. Mahmood, I. Younis, A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29, 42539–42559 (2022)

    Article  Google Scholar 

  3. M.R. Thalji, Nanotechnologies for removal of pharmaceuticals from wastewater. Medicon Pharma Sci 1, 25–28 (2021)

    Google Scholar 

  4. M. Coha, G. Farinelli, A. Tiraferri, M. Minella, D. Vione, Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs. Chem Eng J 414, 128668–128668 (2021)

    Article  CAS  Google Scholar 

  5. Cardoso I.M.F., Cardoso R.M.F., Esteves da Silva J.C.G., Advanced oxidation processes coupled with nanomaterials for water treatment. Nanomaterials, 11, 2045 (2021)

  6. H. Cheng, W. Zhang, X. Liu, T. Tang, J. Xiong, Fabrication of titanium dioxide/carbon fiber (TiO2/CF) composites for removal of methylene blue (MB) from aqueous solution with enhanced photocatalytic activity. J. Chem. 2021, 1–11 (2021)

    Article  CAS  Google Scholar 

  7. Kang X., Liu S., Dai Z., He Y., Song X., Tan Z. Titanium dioxide: from engineering to applications. Catalysts 9(2), 191 (2019)

  8. Dharma H.N.C., Jaafar J., Widiastuti N., Matsuyama H., Rajabsadeh S., Othman M.H.D., Rahman M.A., Jafri N.N.M., Suhaimin N.S., Nasir A.M., Alias N.H. A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes, 12(3), 345 (2022)

  9. K. Lee, H. Yoon, C. Ahn, J. Park, S. Jeon, Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials. Nanoscale 11, 7025–7040 (2019)

    Article  CAS  Google Scholar 

  10. M.D. Calisir, M. Gungor, A. Demir, A. Kilic, M.M. Khan, Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities. Ceram. Int. 46, 16743–16753 (2020)

    Article  CAS  Google Scholar 

  11. M. Giahi, D. Pathania, S. Agarwal, G.A.M. Ali, K.F. Chong, V.K. Gupta, Preparation of Mg-doped TiO2 nanoparticles for photocatalytic degradation of some organic pollutants. Stud Univ Babes-Bolyai, Chem 64, 7–18 (2019)

    CAS  Google Scholar 

  12. X. He, A. Wang, P. Wu, S. Tang, Y. Zhang, L. Li, P. Ding, Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: a review. Sci Total Environ 743, 140694–140694 (2020)

    Article  CAS  Google Scholar 

  13. A.S. Ethiraj, D.S. Rhen, A.V. Soldatov, G.A.M. Ali, Z.H. Bakr, Efficient and recyclable Cu incorporated TiO2 nanoparticle catalyst for organic dye photodegradation. Int J Thin Film Sci Technol 10, 169–182 (2021)

    Article  Google Scholar 

  14. C. Zhu, J. Xu, S. Song, J. Wang, Y. Li, R. Liu, Y. Shen, TiO2 quantum dots loaded sulfonated graphene aerogel for effective adsorption-photocatalysis of PFOA. Sci Total Environ 698, 134275–134275 (2020)

    Article  CAS  Google Scholar 

  15. M.M. Zagho, M.K. Hassan, M. Khraisheh, M.A.A. Al-Maadeed, S. Nazarenko, A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chem Eng J Adv 6, 100091–100091 (2021)

    Article  CAS  Google Scholar 

  16. S. Wu, W.P.C. Lee, P. Wu, Origin of observed narrow bandgap of mica nanosheets. Sci Rep 12, 1–11 (2022)

    Google Scholar 

  17. U. Malayoglu, N. Besun, Development of nanosized mica particles from natural mica by sonication/organic intercalation method for pearlescent pigment. Minerals 10, 1–17 (2020)

    Article  Google Scholar 

  18. Ribeiro A.C., Barbosa de Andrade M., Quesada H.B., Bergamasco Beltran L., Bergamasco R., Calado Santos Sobral da Fonseca M.M., da Costa Neves Fernandes de Almeida Duarte E. Physico-chemical and electrostatic surface characterisation of mica mineral and its applicability on the adsorption of Safranin Orange and Reactive Black 5 dyes. Environ. Technol. 43:24, 3765–3778 (2021)

  19. A. Malani, K.G. Ayappa, S. Murad, Influence of hydrophilic surface specificity on the structural properties of confined water. J Phys Chem B 113, 13825–13839 (2009)

    Article  CAS  Google Scholar 

  20. I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah, I. Khan, Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 14, 242–242 (2022)

    Article  CAS  Google Scholar 

  21. W.K. Essa, S.A. Yasin, A.H. Abdullah, M.R. Thalji, I.A. Saeed, M.A. Assiri, K.F. Chong, G.A.M. Ali, Taguchi L25 (54) Approach for methylene blue removal by polyethylene terephthalate nanofiber-multi-walled carbon nanotube composite. Water 14, 1242 (2022)

    Article  CAS  Google Scholar 

  22. M. Shaban, A.M. Ahmed, N. Shehata, M.A. Betiha, A.M. Rabie, Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. J Colloid Interface Sci 555, 31–41 (2019)

    Article  CAS  Google Scholar 

  23. A. Kumar, P. Choudhary, V. Krishnan, Selective and efficient aerobic oxidation of benzyl alcohols using plasmonic Au-TiO2: influence of phase transformation on photocatalytic activity. Appl Surf Sci 578, 151953–151953 (2022)

    Article  CAS  Google Scholar 

  24. R. Kalantarian, N. Montazeri, M.M. Zeydi, A. Hatam, A. Pizzi, Melamine–formaldehyde curing acceleration by TiO2-based silver-white pigments catalysis. Eur J Wood Wood Prod 79, 863–871 (2021)

    Article  CAS  Google Scholar 

  25. J. Zhou, B. Liu, L. Zhang, Q. Li, C. Xu, H. Liu, MXene driven in-situ construction of hollow core-shelled Co3V2O8@Ti3C2Tx nanospheres for high performance all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 10, 24896-24904 (2022)

  26. Z. Wu, K. Guo, S. Cao, W. Yao, L. Piao, Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Res 13, 551–556 (2020)

    Article  CAS  Google Scholar 

  27. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92, 311–330 (2011)

    Article  CAS  Google Scholar 

  28. T. Wang, C. Zhao, L. Meng, Y. Li, H. Chu, F. Wang, Y. Tao, W. Liu, C.C. Wang, In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: a novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination. Chem Eng J 451, 138624–138624 (2023)

    Article  CAS  Google Scholar 

  29. Jafri N.N.M., Jaafar J., Alias N.H., Samitsu S., Aziz F., Salleh W.N.W., Yusop M.Z.M., Othman M.H.D., Rahman M.A., Ismail A.F., Matsuura T., Isloor A.M. Synthesis and characterization of titanium dioxide hollow nanofiber for photocatalytic degradation of methylene blue dye. Membranes 11(8), 581 (2021)

  30. Kocijan M., Ćurković L., Gonçalves G., Podlogar M. The potential of rGO@TiO2 photocatalyst for the degradation of organic pollutants in water. Sustainability 14(19), 12703 (2022)

  31. M.W. Jun Wang, Y.T.W. Deng, A review on photocatalytic glass ceramics: fundamentals, preparation, performance enhancement and future development. Catalysts 12, 1235–1235 (2022)

    Article  Google Scholar 

  32. S. Biswas, S.S. Mohapatra, U. Kumari, B.C. Meikap, T.K. Sen, Batch and continuous closed circuit semi-fluidized bed operation: removal of MB dye using sugarcane bagasse biochar and alginate composite adsorbents. J Environ Chem Eng 8, 103637–103637 (2020)

    Article  CAS  Google Scholar 

  33. S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: a comparison with Cr- and Ni-doped TiO2. Res Chem Intermed 44, 3115–3134 (2018)

    Article  CAS  Google Scholar 

  34. I.H. Chowdhury, S. Ghosh, M.K. Naskar, Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue. Ceram Int 42, 2488–2496 (2016)

    Article  CAS  Google Scholar 

  35. G. Jiang, X. Zheng, Y. Wang, T. Li, X. Sun, Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites. Powder Technol 207, 465–469 (2011)

    Article  CAS  Google Scholar 

  36. R. Ahmad, P.K. Mondal, Adsorption and photodegradation of methylene blue by using PAni/TiO2 nanocomposite. J Dispersion Sci Technol 33, 380–386 (2012)

    Article  CAS  Google Scholar 

  37. S.P. Santoso, A.E. Angkawijaya, V. Bundjaja, C.-W. Hsieh, A.W. Go, M. Yuliana, H.-Y. Hsu, P.L. Tran-Nguyen, F.E. Soetaredjo, S. Ismadji, TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. Int J Biol Macromol 193, 721–733 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation (NRF) of South Korea (2022R1A2C1004392).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Nargess Ghafourian, Mohammad Thalji, and Gomaa Ali; data curation: Seyed Hosseini; formal analysis: Nargess Ghafourian, Zahra Mahmoodi, and Abbas Abhari; investigation: Nargess Ghafourian, Seyed Hosseini, Mohammad Thalji, Nasrin Masnabadi, Zahra Mahmoodi, Kwok Chong, Gomaa Ali, and Zinab Bakr; methodology: Nasrin Masnabadi, Zahra Mahmoodi, and Abbas Abhari; resources: Wail Al Zoubi and Zinab Bakr; validation: Seyed Hosseini, Wail Al Zoubi, and Kwok Chong; visualization: Nasrin Masnabadi; writing—original draft: Nargess Ghafourian; writing—review and editing: Mohammad Thalji, Abbas Abhari, Wail Al Zoubi, Kwok Chong, Gomaa Ali, and Zinab Bakr.

Corresponding authors

Correspondence to Narges Ghafourian, Zahra Mahmoodi, Mohammad R. Thalji, Wail Al Zoubi or Zinab H. Bakr.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Highlights

• TiO2-Mica 450 composite photocatalyst was successfully fabricated by hydrolysis-precipitation method.

• TiO2-Mica 450 composite showed a maximum MB degradation of 99.2% during 70 min under UV light.

• The highest degradation performance was achieved using 5.5 g L−1 of TiO2-Mica 450.

• TiO2-Mica 450 composite provided an effective broad prospect ideal for wastewater purification.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafourian, N., Hosseini, S.N., Mahmoodi, Z. et al. TiO2-Mica 450 composite for photocatalytic degradation of methylene blue using UV irradiation. emergent mater. 6, 1527–1536 (2023). https://doi.org/10.1007/s42247-023-00552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00552-6

Keywords

Navigation