Skip to main content
Log in

Calcined hydrotalcites of varying Mg/Al ratios supported Rh catalysts: highly active mesoporous and stable catalysts toward catalytic partial oxidation of methane

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Catalytic partial oxidation of methane to produce syngas were studied over calcined hydrotalcites of varying Mg/Al ratios supported Rh catalysts. Hydrotalcites of varying Mg/Al ratios were prepared using their hydroxide precursors and intercalating them with amino acid lysine. Upon calcination, these hydrotalcites converted into their mixed metal oxides having mesoporosity and used directly as support materials for the synthesis of rhodium catalysts. Rh dispersion, size of the nanoparticles, and metal-support interactions were found to strongly influence the activity of the catalyst and their stability. Feed composition, gas hourly space velocity, and temperature were found to influence the catalyst activity, CO/H2 ratio, and CO/CO2 selectivity. Alumina and alumina-rich calcined hydrotalcites exhibit higher catalytic activity, but carbon formation and aggregation were prominent. In contrast, MgO and MgO-rich calcined hydrotalcite supported Rh catalysts exhibit moderate activity; however, they were resistant against particle sintering and carbon formation. Long-term testings of these catalysts were carried out, and it was observed that calcined hydrotalcites of varying Mg/Al ratios supported Rh catalysts were promising candidates as stable and active catalysts toward catalytic partial oxidation of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.C. Enger, R. Loedeng, A. Holmen, A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal. A 346(1–2), 1–27 (2008). https://doi.org/10.1016/j.apcata.2008.05.018

    Article  CAS  Google Scholar 

  2. S. Liu, Y. Chen, H. Xu, Y. Wang, W. Li, Review on the reactors for the production of synthesis gas by catalytic partial oxidation of methane. Shiyou Yu Tianranqi Huagong 37(2), 105–109, 114 (2008)

    CAS  Google Scholar 

  3. H.-T. Wang, S.-X. Tian, Z.-H. Li, Catalytic partial oxidation of methane to syngas. Tianjin Gongye Daxue Xuebao 23(1), 43–45 (2004)

    CAS  Google Scholar 

  4. M. Baerns, O.V. Buyevskaya, L. Mleczko, D. Wolf, Catalytic partial oxidation of methane to synthesis gas - catalysis and reaction engineering. Stud. Surf. Sci. Catal. 107(Natural Gas Conversion IV), 421–428 (1997)

    Article  CAS  Google Scholar 

  5. A. Bitsch-Larsen, Catalytic partial oxidation of methane at industrially relevant conditions. PhD thesis, University of Minnesota Minneapolis (2008)

  6. W.-J. Choi, J.-Y. Park, M.-S. Kim, H.-S. Park, H.-S. Hahm, Catalytic partial oxidation of methane to methanol. J. Ind. Eng. Chem. (Seoul, Repub. Korea) 7(4), 187–192 (2001)

    CAS  Google Scholar 

  7. M. Bizzi, L. Basini, G. Saracco, V. Specchia, Short contact time catalytic partial oxidation of methane: analysis of transport phenomena effects. Chem. Eng. J. (Amsterdam, Neth.) 90(1–2), 97–106 (2002). https://doi.org/10.1016/S1385-8947(02)00071-2

    Article  CAS  Google Scholar 

  8. W.-H. Chen, S.-C. Lin, Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation. Energy (Oxford, U. K.) 82, 206–217 (2015). https://doi.org/10.1016/j.energy.2015.01.031

    Article  CAS  Google Scholar 

  9. A.M. De Groote, G.F. Froment, Simulation of the catalytic partial oxidation of methane to synthesis gas. Appl. Catal. A 138(2), 245–264 (1996). https://doi.org/10.1016/0926-860X(95)00299-5

    Article  Google Scholar 

  10. K.L. Hohn, Catalytic partial oxidation of methane at high flow rates: production of syngas and acetylene. PhD thesis, University of Minnesota Minneapolis  (1999)

  11. C. Hurt, M. Brandt, S.S. Priya, T. Bhatelia, J. Patel, P.R. Selvakannan, S. Bhargava, Combining additive manufacturing and catalysis: a review. Catal. Sci. Technol. 7(16), 3421–3439 (2017). https://doi.org/10.1039/C7CY00615B

    Article  CAS  Google Scholar 

  12. N. Burke, D. Trimm, Coke formation during high pressure catalytic partial oxidation of methane to syngas. React. Kinet. Catal. Lett. 84(1), 137–142 (2005)

    Article  CAS  Google Scholar 

  13. P.J. Fleming, W. Cossutta, P.J. Jackson, Carbon deposition in the catalytic partial oxidation of methane to synthesis gas. Stud. Surf. Sci. Catal. 81(Natural Gas Conversion II), 321–324 (1994)

    Article  CAS  Google Scholar 

  14. R. Jin, Y. Chen, W. Cui, W. Li, C. Yu, Y. Jiang, Mechanism of catalytic partial oxidation of methane to synthesis gas on nickel catalyst. Wuli Huaxue Xuebao 15(4), 313–318 (1999)

    CAS  Google Scholar 

  15. R. Jin, Y. Chen, W. Li, W. Cui, Y. Ji, C. Yu, Y. Jiang, Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst. Appl. Catal., A 201(1), 71–80 (2000). https://doi.org/10.1016/S0926-860X(00)00424-5

    Article  CAS  Google Scholar 

  16. T. Liu, G. Veser, Temperature dynamics during catalytic partial oxidation of methane in a reverse-flow reactor. ACS Fuel Chemistry Preprints 50 (2005)

  17. Z. Jiang, J. Su, M.O. Jones, H. Shi, T. Xiao, P.P. Edwards, Catalytic partial oxidation of methane over Ni-based catalysts derived from Ni-mg/Al ternary Hydrotalcites. Energy Fuel 23(3), 1634–1639 (2009). https://doi.org/10.1021/ef800933j

    Article  CAS  Google Scholar 

  18. M.H. Rafiq, H.A. Jakobsen, J.E. Hustad, Modeling and simulation of catalytic partial oxidation of methane to synthesis gas by using a plasma-assisted gliding arc reactor. Fuel Process. Technol. 101, 44–57 (2012). https://doi.org/10.1016/j.fuproc.2011.12.044

    Article  CAS  Google Scholar 

  19. R.C. Ramaswamy, P.A. Ramachandran, M.P. Dudukovic, Modeling catalytic partial oxidation of methane to syngas in short-contact-time packed-bed reactors. Ind. Eng. Chem. Res. 46(25), 8638–8651 (2007). https://doi.org/10.1021/ie070084l

    Article  CAS  Google Scholar 

  20. J. Yu, L. Zhang, Z. Yu, Study on the catalytic partial oxidation of methane to syngas. II. Study on Pt-doped Ni/Al2O3 catalysts. Tianranqi Huagong 21(5), 23–25 (1996)

    CAS  Google Scholar 

  21. J. Yu, L. Zhang, Z. Yu, Study on catalytic partial oxidation of methane to syngas. I. Supported nickel/α-alumina catalysts. Tianranqi Huagong 21(4), 5–8 (1996)

    CAS  Google Scholar 

  22. M. Prettre, C. Eichner, M. Perrin, The catalytic oxidation of methane to carbon monoxide and hydrogen. Trans. Faraday Soc. 42(0), 335b–3339b (1946). https://doi.org/10.1039/TF946420335B

  23. L.J.I. Coleman, E. Croiset, W. Epling, M. Fowler, R.R. Hudgins, Evaluation of foam nickel for the catalytic partial oxidation of methane. Catal. Lett. 128(1–2), 144–153 (2009). https://doi.org/10.1007/s10562-008-9707-y

    Article  CAS  Google Scholar 

  24. J.A. Velasco, C. Fernandez, L. Lopez, S. Cabrera, M. Boutonnet, S. Jaeraas, Catalytic partial oxidation of methane over nickel and ruthenium based catalysts under low O2/CH4 ratios and with addition of steam. Fuel 153, 192–201 (2015). https://doi.org/10.1016/j.fuel.2015.03.009

    Article  CAS  Google Scholar 

  25. L.D. Vella, S. Specchia, Alumina-supported nickel catalysts for catalytic partial oxidation of methane in short-contact time reactors. Catal. Today 176(1), 340–346 (2011). https://doi.org/10.1016/j.cattod.2010.11.068

    Article  CAS  Google Scholar 

  26. V.R. Choudhary, B.S. Uphade, A.S. Mamman, Oxidative conversion of methane to syngas over nickel supported on commercial low surface area porous catalyst carriers precoated with alkaline and rare earth oxides. J. Catal. 172(2), 281–293 (1997). https://doi.org/10.1006/jcat.1997.1838

    Article  CAS  Google Scholar 

  27. F. Basile, P. Benito, G. Fornasari, M. Monti, E. Scavetta, D. Tonelli, A. Vaccari, Novel Rh-based structured catalysts for the catalytic partial oxidation of methane. Catal. Today 157(1–4), 183–190 (2010). https://doi.org/10.1016/j.cattod.2010.04.039

    Article  CAS  Google Scholar 

  28. J.-D. Grunwaldt, L. Basini, B.S. Clausen, In situ EXAFS study of Rh/Al2O3 catalysts for catalytic partial oxidation of methane. J. Catal. 200(2), 321–329 (2001). https://doi.org/10.1006/jcat.2001.3211

    Article  CAS  Google Scholar 

  29. D. Li, S. Sakai, Y. Nakagawa, K. Tomishige, FTIR study of CO adsorption on Rh/MgO modified with co, Ni, Fe, or CeO2 for the catalytic partial oxidation of methane. Phys. Chem. Chem. Phys. 14(25), 9204–9213 (2012). https://doi.org/10.1039/c2cp41050h

    Article  CAS  Google Scholar 

  30. S. Mandal, P.R. Selvakannan, D. Roy, R.V. Chaudhari, M. Sastry, A new method for the synthesis of hydrophobized, catalytically active Pt nanoparticles. Chem. Commun. (Cambridge, U. K.) 24, 3002–3003 (2002). https://doi.org/10.1039/b209050c

    Article  CAS  Google Scholar 

  31. A. Ballarini, P. Benito, G. Fornasari, O. Scelza, A. Vaccari, Role of the composition and preparation method in the activity of hydrotalcite-derived Ru catalysts in the catalytic partial oxidation of methane. Int. J. Hydrog. Energy 38(35), 15128–15139 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.135

    Article  CAS  Google Scholar 

  32. F. Basile, G. Fornasari, V. Rosetti, F. Trifiro, A. Vaccari, Effect of the mg/Al ratio of the hydrotalcite-type precursor on the dispersion and activity of Rh and Ru catalysts for the partial oxidation of methane. Catal. Today 91-92, 293–297 (2004). https://doi.org/10.1016/j.cattod.2004.03.047

    Article  CAS  Google Scholar 

  33. J.K. Hochmuth, Catalytic partial oxidation of methane over a monolith supported catalyst. Appl. Catal. B 1(2), 89–100 (1992). https://doi.org/10.1016/0926-3373(92)80035-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The statements made herein are solely the responsibility of the authors. Tibra Mozammel sincerely acknowledge RMIT for the PhD fellowship and Dr. Jim Patel (CSIRO, Gas processing facilities) for providing permission to use the catalyst testing facilities.

Funding

This work was carried by the NPRP grant # NPRP11S-1221-170116 from the Qatar National Research Fund (a member of Qatar Foundation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to PR Selvakannan or Suresh K. Bhargava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozammel, T., Dumbre, D., Selvakannan, P. et al. Calcined hydrotalcites of varying Mg/Al ratios supported Rh catalysts: highly active mesoporous and stable catalysts toward catalytic partial oxidation of methane. emergent mater. 4, 469–481 (2021). https://doi.org/10.1007/s42247-020-00158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00158-2

Keywords

Navigation