Skip to main content
Log in

Chromium enrichment in different crystalline phases of Cr-containing slag under various basicities and equilibrium temperatures

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of basicities and equilibrium temperatures on the enrichment of chromium in different mineral phases of synthesized argon–oxygen decarburization slags were investigated to understand the Cr concentrating behavior into Mg(Cr,Al)2O4 spinel phase and to determine the leaching stability of Cr-containing slag. The results showed that when the basicity decreased from 1.0 to 0.6 and temperatures decreased from 1600 to 800 °C, the Cr content of amorphous phase and crystalline phase gradually decreased, with a subsequent increase in the Cr content of spinel phase. The range of Cr enrichment in spinel of slags S1, S2, and S3 is 92.03–96.89, 91.63–96.36, and 90.67–95.42, respectively. The mass fraction and the size of spinel increased with the decreasing equilibrium temperatures, and the Cr leaching values decreased simultaneously. Therefore, the trend of the amount of Cr-related ions in the leachate was consistent with the trend of Cr in the amorphous phase, diopside, and akermanite. The results suggest that the lower basicity and equilibrium temperatures could be conducive to stabilizing Cr into spinel phase to minimize Cr leaching into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Guo, Y. Bao, M. Wang, Waste Manag. 78 (2018) 318–330.

    Article  Google Scholar 

  2. Z. Huawei, H. Xin, Resour. Conserv. Recycl. 55 (2011) 745–754.

    Article  Google Scholar 

  3. S. Zhang, Y. Zhang, Z. Qu, J. Alloy. Compd. 805 (2019) 1106–1116.

    Article  Google Scholar 

  4. S. Zhang, Y. Zhang, Z. Qu, Ceram. Int. 45 (2019) 11216–11225.

    Article  Google Scholar 

  5. K. Cui, Y. Zhang, T. Fu, S. Hussain, T.S. Algarni, J. Wang, X. Zhang, S. Ali, Coatings 11 (2021) 234.

    Article  Google Scholar 

  6. S. Zhang, Y. Zhang, T. Wu, Ceram. Int. 44 (2018) 10119–10129.

    Article  Google Scholar 

  7. Z. Wang, I. Sohn, Ceram. Int. 46 (2020) 903–912.

    Article  Google Scholar 

  8. S. Kawanishi, T. Yoshikawa, ISIJ Int. 60 (2020) 2123–2128.

    Article  Google Scholar 

  9. X. He, L. Wang, K. Chou, Ceram. Int. 47 (2021) 12476–12482.

    Article  Google Scholar 

  10. M. Leuchtenmüller, J. Antrekowitsch, S. Steinlechner, Metall. Mater. Trans. B 50 (2019) 2221–2228.

    Article  Google Scholar 

  11. S. Zhang, Y. Zhang, J. Gao, Z. Qu, Z. Zhang, J. Eur. Ceram. Soc. 39 (2019) 4283–4291.

    Article  Google Scholar 

  12. W. Song, J. Cao, Z. Wang, X. Geng, J. Lu, J. Hazard. Mater. 403 (2021) 123598.

  13. Z. Wang, I. Sohn, J. Am. Ceram. Soc. 103 (2020) 6012–6024.

    Article  Google Scholar 

  14. G. Kim, I. Sohn, J. Hazard. Mater. 359 (2018) 174–185.

    Article  Google Scholar 

  15. Y. Lin, B. Yan, T. Fabritius, Q. Shu, Metall. Mater. Trans. B 51 (2020) 763–775.

    Article  Google Scholar 

  16. Q. Zhao, C. Liu, L. Cao, M. Jiang, B. Li, H. Saxén, R. Zevenhoven, ISIJ Int. 59 (2019) 583–589.

    Article  Google Scholar 

  17. D. Mombelli, S. Barella, A. Gruttadauria, C. Mapelli, G.L. Saout, E. Garcia-Diaz, Appl. Sci. 9 (2019) 121.

    Article  Google Scholar 

  18. F. Jiang, Y. Li, L. Zhao, D. Cang, Appl. Clay Sci. 143 (2017) 199–204.

    Article  Google Scholar 

  19. F. Engström, D. Adolfsson, Q. Yang, C. Samuelsson, B. Björkman, Steel Res. Int. 81 (2010) 362–371.

    Article  Google Scholar 

  20. L. Wang, S. Seetharaman, Metall. Mater. Trans. B 41 (2010) 946–954.

    Article  Google Scholar 

  21. S. Mostafaee, A study of EAF high-chromium stainless steelmaking slags characteristics and foamability, KTH Royal Institute of Technology, Stockholm, Sweden, 2011.

  22. G.J. Albertsson, L. Teng, B. Björkman, Miner. Process. Extr. Metall. 123 (2014) 116–122.

    Google Scholar 

  23. L.H. Cao, C.J. Liu, Q. Zhao, M.F. Jiang, J. Iron Steel Res. Int. 24 (2017) 258–265.

    Article  Google Scholar 

  24. Q. Zhao, C. Liu, L. Cao, X. Zheng, M. Jiang, Minerals 8 (2018) 445.

    Article  Google Scholar 

  25. J. Yang, B. Liu, S. Zhang, A.A. Volinsky, J. Alloy. Compd. 688 (2016) 709–714.

    Article  Google Scholar 

  26. S.G. Zhang, J. Yang, B. Liu, D.A. Pan, C.L. Wu, A.A. Volinsky, J. Iron Steel Res. Int. 23 (2016) 220–224.

    Article  Google Scholar 

  27. C. Zou, J. Cao, M. Zhao, Z. Wang, J. Lu, J. Eur. Ceram. Soc. 39 (2019) 4979–4987.

    Article  Google Scholar 

  28. J. Ma, Y. Shi, H. Zhang, S. Ouyang, L. Deng, H. Chen, M. Zhao, Y. Du, Mater. Chem. Phys. 261 (2021) 124213.

  29. W. Li, X. Xue, Ironmak. Steelmak. 45 (2018) 929–936.

    Article  Google Scholar 

  30. Y. Shi, B.W. Li, M. Zhao, M.X. Zhang, J. Am. Ceram. Soc. 101 (2018) 3968–3978.

    Article  Google Scholar 

  31. M. Nath, P. Kumar, S. Song, Y. Li, H.S. Tripathi, Ceram. Int. 45 (2019) 12411–12416.

    Article  Google Scholar 

  32. Y. Sugimoto, S. Kitamura, K. Maeda, Refractories 58 (2006) 133–142.

    Google Scholar 

  33. R.G. Burns, Mineralogical applications of crystal field theory, Cambridge University Press, Cambridge, UK, 1993.

    Book  Google Scholar 

  34. B. Warren, W. Lawrence Bragg, Zeitschrift für Kristallographie-Crystalline Materials 69 (1929) 168–193.

  35. M. Kimata, N. Ii, N. Jb. Miner. Abh. 144 (1982) 254–267.

    Article  Google Scholar 

  36. V. Simonet, F. Hippert, M. Audier, R. Bellissent, Phys. B 315 (2002) 187–200.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFC1905701) and the National Natural Science Foundation of China (U1960201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Sw., Zhang, Yl. & Zhang, S. Chromium enrichment in different crystalline phases of Cr-containing slag under various basicities and equilibrium temperatures. J. Iron Steel Res. Int. 29, 1412–1422 (2022). https://doi.org/10.1007/s42243-021-00737-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00737-5

Keywords

Navigation