Skip to main content
Log in

Upgrade of nickel and iron from low-grade nickel laterite by improving direct reduction-magnetic separation process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Low-grade saprolite nickel laterite, characterized by complicated minerals composition and fine-grained and complex dissemination, was commonly treated with a low recovery efficiency of Ni and Fe by conventional methods. Hence, an improved direct reduction and magnetic separation process was proposed. Meanwhile, the mechanisms on the enhanced growth of the Ni–Fe particles and the phase transformation in the nickel laterite pellets were explored. The low-nickel concentrates as a nucleating agent can obviously decrease the activation energy for growth of Ni–Fe alloy particles during the improved direct reduction process from 197.10 to 154.81 kJ/mol when the low-nickel concentrates were added from 0 to 20%. Hence, it is able to decrease nucleation barrier, induce the growth of Fe–Ni alloy particles and increase their average size. As a result, the size of Ni–Fe particles in the pellets from less than 10 μm grew to more than 20 μm, which is beneficial for the full liberation and recovery of Ni and Fe in subsequent magnetic separation process. Therefore, the preferable Ni–Fe alloy concentrates with 6.44% Ni and 82.48% Fe can be prepared with corresponding recovery rates of 96.90% and 95.92%, respectively, when adding 20% low-nickel concentrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.K. Reck, V.S. Rotter, J. Ind. Ecol. 16 (2012) 518–528.

    Article  Google Scholar 

  2. N.R. Baddoo, J. Constr. Steel Res. 64 (2008) 1199–1206.

    Article  Google Scholar 

  3. D.Q. Zhu, H.Y. Tian, J. Pan, H. Liao, Z.Q. Guo, Y.X. Xue, J. Iron Steel Res. 32 (2020) 351–362.

    Google Scholar 

  4. D.Q. Zhu, Y. Cui, S. Hapugoda, K. Vining, J. Pan, Trans. Nonferrous Met. Soc. China 22 (2012) 907–916.

    Article  Google Scholar 

  5. D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, G.L. Zheng, Int. J. Miner. Process. 106–109 (2012) 1–7.

    Google Scholar 

  6. W. Luo, Q.M. Feng, L.M. Ou, G.F. Zhang, Y.P. Lu, Hydrometallurgy 96 (2009) 171–175.

    Article  Google Scholar 

  7. Y.Y. Zhang, K.K Cui, J. Wang, X.F. Wang, J.M. Qie, Q.Y. Xu, T.H. Qi, Powder Technol. 376 (2020) 496–506.

    Article  Google Scholar 

  8. A. Oxley, N. Barcza, Miner. Eng. 54 (2013) 2–13.

    Article  Google Scholar 

  9. R.D. Laranjo, N.M. Anacleto, J. Iron Steel Res. Int. 25 (2018) 515–523.

    Article  Google Scholar 

  10. J.H. Zhang, L.H. Gao, Z.J. He, X.M. Hou, W.L. Zhan, Q.H. Pang, J. Mater. Res. Technol. 9 (2020) 12223–12235.

    Article  Google Scholar 

  11. X.D. Ma, Z.X. Cui, B.J. Zhao, JOM 68 (2016) 3006–3014.

    Article  Google Scholar 

  12. R.J. Hundermark, L.R. Nelson, JOM 69 (2017) 335–342.

    Article  Google Scholar 

  13. P. Liu, B.K. Li, S.C.P. Cheung, W.Y. Wu, Appl. Therm. Eng. 109 (2016) 542–559.

    Article  Google Scholar 

  14. J.Z. Khoo, N. Haque, G. Woodbridge, R. McDonald, S. Bhattacharya, J. Clean. Prod. 142 (2017) 1765–1777.

    Article  Google Scholar 

  15. W. Rong, B. Li, P. Liu, F. Qi, Energy 138 (2017) 942–953.

    Article  Google Scholar 

  16. L.H. Gao, Z.G. Liu, Y.Z. Pan, Y. Ge, C. Feng, M.S. Chu, J. Tang, Min. Metall. Explor. 36 (2019) 375–384.

    Google Scholar 

  17. L.W. Wang, X.M. Lü, M. Liu, Z.X. You, X.W. Lü, C.G. Bai, Int. J. Miner. Metall. Mater. 25 (2017) 744–751.

    Article  Google Scholar 

  18. Y.J. Li, Y.S. Sun, Y.X. Han, P. Gao, Trans. Nonferrous Met. Soc. China 23 (2013) 3428–3433.

    Article  Google Scholar 

  19. D.Q. Zhu, L.T. Pan, Z.Q. Guo, J. Pan, F. Zhang, Adv. Powder Technol. 30 (2019) 451–460.

    Article  Google Scholar 

  20. X.H. Tang, R.Z. Liu, L. Yao, Z.J. Ji, Y.T. Zhang, S.Q. Li, Int. J. Miner. Metall. Mater. 21 (2014) 955–961.

    Article  Google Scholar 

  21. S. Pintowantoro, F. Abdul, Mater. Trans. 60 (2019) 2245–2254.

    Article  Google Scholar 

  22. X. Jiang, L. He, L. Wang, D.W. Xiang, H.W. An, F.M. Shen, Metall. Mater. Trans. B 51 (2020) 2653–2662.

    Article  Google Scholar 

  23. S. Yuan, W.T. Zhou, Y.J. Li, Y.X. Han, Trans. Nonferrous Met. Soc. China 30 (2020) 812–822.

    Article  Google Scholar 

  24. H. Tsuji, ISIJ Int. 52 (2012) 1000–1009.

    Article  Google Scholar 

  25. Y. Kobayashi, H. Todoroki, H. Tsuji, ISIJ Int. 51 (2011) 35–40.

    Article  Google Scholar 

  26. Y.F. Chen, X.M. Lv, Z.D. Pang, X.W. Lv, J. Iron Steel Res. Int. 27 (2020) 1400–1406.

    Article  Google Scholar 

  27. J.C. Dong, Y.G. Wei, S.W. Zhou, B. Li, Y.D. Yang, A. Mclean, JOM 70 (2018) 2365–2377.

    Article  Google Scholar 

  28. Z.Q. Guo, J. Pan, D.Q. Zhu, F. Zhang, JOM 70 (2018) 150–154.

    Article  Google Scholar 

  29. H.Y. Tian, J. Pan, D.Q. Zhu, C.C. Yang, Z.Q. Guo, Y.X. Xue, J. Mater. Res. Technol. 9 (2020) 2578–2589.

    Article  Google Scholar 

  30. M.J. Rao, G.H. Li, T. Jiang, J. Luo, Y.B. Zhang, X.H. Fan, JOM 65 (2013) 1573–1583.

    Article  Google Scholar 

  31. C.M. Sellars, J.A. Whiteman, Met. Sci. 13 (1979) 187–194.

    Article  Google Scholar 

  32. S. Yu, Z. Tao, L.X. Du, Hot Work. Technol. 49 (2020) No. 6, 121–123.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Youth Natural Science Foundation of China (No. 51904347), the National Natural Science Foundation of China (No. 51574281) and Innovation-driven Project of Guangxi Zhuang Autonomous Region (No. AA18242003). The authors would like to thank the Fundamental Research Funds for the Central Universities of Central South University, which supplied us the facilities and funds to fulfill the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-qi Guo or Jian Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Hy., Guo, Zq., Zhan, Rn. et al. Upgrade of nickel and iron from low-grade nickel laterite by improving direct reduction-magnetic separation process. J. Iron Steel Res. Int. 29, 1164–1175 (2022). https://doi.org/10.1007/s42243-021-00646-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00646-7

Keywords

Navigation