Skip to main content
Log in

Dynamic recrystallization behaviour of H13-mod steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

H13-mod steel developed after optimizing the composition and heat treatment process exhibits good hardness and impact toughness and can be used as a shield machine hob. Based on the Avrami equation, the dynamic recrystallization (DRX) behaviour of H13-mod steel during hot compression was studied in the temperature of 900–1150 °C and strain rate ranges of 0.01–10 s−1. A DRX model and finite element software were used to study DRX behaviour of H13-mod steel. Significant DRX was found at both low and high strain rates. Electron backscatter diffraction and optical microscopy analyses found different DRX nucleation mechanisms at low and high strain rates under different deformations. At a low strain rate, the nucleation was dominated by the strain-induced grain boundary migration, whereas the subgrain coalescence mechanism was dominant at a high strain rate. Moreover, dynamic recovery occurred in both processes. In addition, it was easier to obtain small and uniform equiaxed grains at high strain rates than at low strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.J. Jonas, T. Sakai, Acta Metall. 32 (1984) 189–209.

    Google Scholar 

  2. C.M. Li, Y. Liu, Y.B. Tan, F. Zhao, Metals 8 (2018) 846.

    Google Scholar 

  3. S.L. Wang, M.X. Zhang, H.C. Wu, B. Yang, Mater. Charact. 118 (2016) 92–101.

    Google Scholar 

  4. M. Irani, M. Joun, Comput. Mater. Sci. 142 (2018) 178–184.

    Google Scholar 

  5. C.M. Li, Y.B. Tan, F. Zhao, Mater. Res. Express 6 (2019) 026578.

    Google Scholar 

  6. Z. Wan, Y. Sun, L. Hu, H. Yu, Mater. Des. 122 (2017) 11–20.

    Google Scholar 

  7. Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, J. Alloy. Compd. 550 (2013) 438–445.

    Google Scholar 

  8. Y. Yang, Z. Xie, Z. Zhang, X. Li, Q. Wang, Y. Zhang, Mater. Sci. Eng. A 615 (2014) 183–190.

    Google Scholar 

  9. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130–207.

    Google Scholar 

  10. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.

    Google Scholar 

  11. Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Acta Mater. 82 (2015) 244–254.

    Google Scholar 

  12. H. Yamagata, Y. Ohuchida, N. Saito, M. Otsuka, Scripta Mater. 45 (2001) 1055–1061.

    Google Scholar 

  13. P. Cizek, Acta Mater. 106 (2016) 129–143.

    Google Scholar 

  14. Q.Y. Zhao, F. Yang, R. Torrens, L. Bolzoni, Mater. Des. 169 (2019) 107682.

    Google Scholar 

  15. A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Mater. Sci. Eng. A 485 (2008) 664–672.

    Google Scholar 

  16. F. Zhu, H. Wu, S. Lee, M. Lin, D. Chen, Mater. Sci. Eng. A 640 (2015) 385–393.

    Google Scholar 

  17. Y.C. Lin, X. Wu, X. Chen, J. Chen, D. Wen, J. Zhang, L. Li, J. Alloy. Compd. 640 (2015) 101–113.

    Google Scholar 

  18. D. He, Y.C. Lin, J. Chen, D. Chen, J. Huang, Y. Tang, M. Chen, Mater. Des. 154 (2018) 51–62.

    Google Scholar 

  19. A. Momeni, K. Dehghani, Mater. Sci. Eng. A 527 (2010) 5467–5473.

    Google Scholar 

  20. Y.C. Lin, J. Huang, D. He, X. Zhang, Q. Wu, L. Wang, C. Chen, K. Zhou, J. Alloy. Compd. 795 (2019) 471–482.

    Google Scholar 

  21. A. Saboori, M. Pavese, S. Biamino, P. Fino, M. Lombardi, J. Alloy. Compd. 757 (2018) 1–7.

    Google Scholar 

  22. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, M. He, Mater. Des. 57 (2014) 568–577.

    Google Scholar 

  23. H. Wang, D. Liu, J.G. Wang, H.P. Wang, Y. Hu, H.D. Rao, J. Iron Steel Res. Int. 27 (2020) 807–819.

    Google Scholar 

  24. Z.Q. Yang, Z.D. Liu, X.K. He, S.B. Qiao, C.S. Xie, J. Iron Steel Res. Int. 25 (2018) 1189–1197.

    Google Scholar 

  25. L. Cheng, H. Chang, B. Tang, H. Kou, J. Li, J. Alloy. Compd. 552 (2013) 363–369.

    Google Scholar 

  26. R. Ding, Z.X. Guo, Acta Mater. 49 (2001) 3163–3175.

    Google Scholar 

  27. E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Int. J. Plast. 47 (2013) 202–221.

    Google Scholar 

  28. P.D. Hodgson, R.K. Gibbs, ISIJ Int. 32 (1992) 1329–1338.

    Google Scholar 

  29. L.X. Kong, P.D. Hodgson, B. Wang, J. Mater. Process. Technol. 89–90 (1999) 44–50.

    Google Scholar 

  30. A. Laasraoui, J.J. Jonas, ISIJ Int. 31 (1991) 95–105.

    Google Scholar 

  31. H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, Z. Zhou, Mater. Des. 64 (2014) 374–380.

    Google Scholar 

  32. B. Carlsson, J. Mater. Process. Technol. 73 (1998) 1–6.

    Google Scholar 

  33. S. Guo, D. Li, H. Pen, Q. Guo, J. Hu, J. Nucl. Mater. 410 (2011) 52–58.

    Google Scholar 

  34. A.M.S. Hamouda, J. Mater. Process. Technol. 124 (2002) 209–215.

    Google Scholar 

  35. R.L. Goetz, S.L. Semiatin, J. Mater. Eng. Perform. 10 (2001) 710–717.

    Google Scholar 

  36. M.C. Mataya, V.E. Sackschewsky, Metall. Mater. Trans. A 25 (1994) 2737–2752.

    Google Scholar 

  37. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, V.S. Sarma, Mater. Des. 115 (2017) 262–275.

    Google Scholar 

  38. G. Xiao, L.X. Li, T. Ye, Chin. J. Nonferrous Met. 24 (2014) 1268–1274.

    Google Scholar 

  39. X.M. He, Force-saving forming method and microstructure controlling of 1Cr12Ni3Mo2VN extra-large blade of nuclear power, China Academy of Machinery Science and Technology, Beijing, China, 2017.

    Google Scholar 

  40. J. Li, C. Gong, L. Chen, H. Zuo, Y. Liu, Acta Metall. Sin. 50 (2014) 1063–1070.

    Google Scholar 

  41. C.M. Sellars, G.J. Davies, Hot Working and Forming Processes: Proceedings of an International Conference on Hot Working and Forming Processes, The Society, London, UK, 1980.

  42. M. Zhao, L. Huang, R. Zeng, D. Wen, H. Su, J. Li, Mater. Sci. Eng. A 765 (2019) 138300.

    Google Scholar 

  43. A. Belyakov, H. Miura, T. Sakai, Mater. Sci. Eng. A 255 (1998) 139–147.

    Google Scholar 

  44. E. Bruenger, X. Wang, G.B. Gottstein, Scripta Mater. 38 (1998) 1843–1849.

    Google Scholar 

  45. Y.S. Hao, J. Li, W.C. Liu, W.A. Zhang, Z.Y. Liu. J. Iron Steel Res. Int. 26 (2019) 1080–1087.

    Google Scholar 

  46. M.R. Rokni, A. Zarei-Hanzaki, H.R. Abedi, Mater. Sci. Eng. A 532 (2012) 593–600.

    Google Scholar 

  47. H.R. Abedi, A.Z. Hanzaki, Z. Liu, R. Xin, N. Haghdadi, P.D. Hodgson, Mater. Des. 114 (2017) 55–64.

    Google Scholar 

  48. B. Eghbali, Mater. Sci. Eng. A 527 (2010) 3402-3406.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51571066) and Guizhou Science and Technology Project (Grant Nos. 20165654 and 20162326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cm., Tan, Yb. & Zhao, F. Dynamic recrystallization behaviour of H13-mod steel. J. Iron Steel Res. Int. 27, 1073–1086 (2020). https://doi.org/10.1007/s42243-020-00462-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00462-5

Keywords

Navigation