Skip to main content
Log in

Mechanism of improved magnetizing roasting of siderite–hematite iron ore using a synergistic CO–H2 mixture

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A fluidized-bed magnetizing roasting–magnetic separation process was selected to treat this type of material. Phase transformations and microstructural changes in the product resulting from magnetizing roasting under different reducing gases (CO, H2, CO + H2) were clarified by vibrating sample magnetometry, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicated that the conversion ratio and saturation magnetization of samples roasted in a mixed gas of CO and H2 were higher than those of samples produced under CO or H2 alone. This indicated that synergy of the combined CO and H2 gas had a positive effect on the fluidized-bed magnetizing roasting process. The mechanism and kinetics of the improved magnetizing roasting of a siderite–hematite iron ore mixture under this synergistic CO–H2 system were investigated under isothermal conditions. The results indicated that the apparent activation energies of the reactions of the iron oxides decreased from 37.7 and 17.9 to 15.9 kJ/mol when the roasting atmosphere was changed from pure H2 or CO to a gas mixture of CO and H2, respectively. The mixed CO–H2 gas promoted the conversion ratio of hematite and siderite to magnetite, thereby improving the conversion ratio in the fluidized-bed magnetizing roasting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V.P. Ponomar, N.O. Dudchenko, A.B. Brik, Miner. Eng. 122 (2018) 277–284.

    Article  Google Scholar 

  2. E. Tekin, B. Varol, Z. Ayan, M. Satir, N. Jb. Miner. Monat. 2002 (2002) 289–318.

    Google Scholar 

  3. S.N. Rychagov, A.A. Nuzhdaev, I.I. Stepanov, Geochem. Int. 52 (2014) 131–143.

    Article  Google Scholar 

  4. O.B. Apukhtina, V.S. Kamenetsky, K. Ehrig, M.B. Kamenetsky, R. Maas, J. Thompson, J. McPhie, C.L. Ciobanu, N.J. Cook, Econ. Geol. 112 (2017) 1531–1542.

    Article  Google Scholar 

  5. S.J. Bai, M. Wu, C. Lü, S.M. Wen, J. Iron Steel Res. Int. 23 (2016) 891–899.

    Article  Google Scholar 

  6. L. Tankosić, P. Tančić, S. Sredić, Z. Nedić, Minerals 8 (2018) 119.

    Article  Google Scholar 

  7. T. Brachaniec, A. Wieczorek, Carnets Geol. 16 (2016) 349–354.

    Article  Google Scholar 

  8. S. Song, S. Lu, A. Lopez-Valdivieso, Miner. Eng. 15 (2002) 415–422.

    Article  Google Scholar 

  9. D.N. Obiora, M.N. Ossai, F.N. Okeke, A.I. Oha, J. Geol. Soc. India 88 (2016) 654–667.

    Article  Google Scholar 

  10. O.V. Avchenko, I.L. Zhulanova, K.V. Chudnenko, A.A. Karabtsov, Russ. J. Pac. Geol. 12 (2018) 174–189.

    Article  Google Scholar 

  11. T. Umadevi, K. Abhishek, R. Sah, K. Marutiram, Miner. Metall. Process. 35 (2018) 35–45.

    Google Scholar 

  12. F. Lagroix, Y. Guyodo, Front. Earth Sci. 5 (2017) 61.

    Google Scholar 

  13. H.Q. Hao, L.X. Li, Z.T. Yuan, J.T. Liu, J. Mol. Liq. 254 (2018) 349–356.

    Article  Google Scholar 

  14. S.J. Bai, S.M. Wen, D.W. Liu, W.B. Zhang, Y.J. Xian, ISIJ Int. 51 (2011) 1601–1607.

    Article  Google Scholar 

  15. Y.H. Zhang, J. Zhang, Y.J. Zhang, H.C. Li, P. Zhao, J. Wuhan Univ. Technol. 35 (2013) No.3, 116–119.

    Google Scholar 

  16. T.J. Chun, D.Q. Zhu, J. Pan, Miner. Process. Extr. Metall. Rev. 36 (2015) 223–226.

    Article  Google Scholar 

  17. C. Li, H.H. Sun, J. Bai, L.T. Li, J. Hazard. Mater. 174 (2010) 71–77.

    Article  Google Scholar 

  18. Z.J. Su, Y.B. Zhang, J. Chen, B.B. Liu, G.H. Li, T. Jiang, Sep. Sci. Technol. 51 (2016) 1900–1912.

    Article  Google Scholar 

  19. K. Zhang, X.L. Chen, W.C. Guo, H.J. Luo, Z.J. Gong, B.W. Li, W.F. Wu, PLoS One 12 (2017) e0186274.

    Article  Google Scholar 

  20. G.G.O.O. Uwadiale, Miner. Process. Extr. Metall. Rev. 11 (1992) 1–19.

    Article  Google Scholar 

  21. J.W. Yu, Y.X. Han, Y.J. Li, P. Gao, Int. J. Miner. Process. 168 (2017) 102–108.

    Article  Google Scholar 

  22. V.I. Matyukhin, S.G. Melamud, V.V. Shatsillo, O.V. Matyukhin, A.V. Matyukhina, Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya 58 (2015) 652–657.

    Article  Google Scholar 

  23. V.I. Matyukhin, V.V. Shatsillo, A.V. Kuznetsov, D.V. Rybakin, A.F. Krokhalev, Metallurgist 61 (2017) 3–11.

    Article  Google Scholar 

  24. X.H. Wang, Z.H. Wang, J. Liu, F.P. Xiang, J.H. Zhou, K.F. Cen, J. Zhejiang Univ. Eng. Sci. 47 (2013) 675–679.

    Google Scholar 

  25. R.F. Wei, S.H. Feng, H.M. Long, J.X. Li, Z.S. Yuan, D.Q. Cang, C.B. Xu, Energy 140 (2017) 406–414.

    Article  Google Scholar 

  26. J. Tang, M.S. Chu, Z.W. Ying, F. Li, C. Feng, Z.G. Liu, Metals 7 (2017) 153.

    Article  Google Scholar 

  27. W. Li, G.Q. Fu, M.S. Chu, M.Y. Zhu, J. Iron Steel Res. Int. 24 (2017) 34–42.

    Article  Google Scholar 

  28. Y.L. Sui, Y.F. Guo, T. Jiang, X.L. Xie, S. Wang, F.Q. Zheng, Int. J. Miner. Metall. Mater. 24 (2017) 10–17.

    Article  Google Scholar 

  29. S.Y. Luo, C.J. Yi, Y.M. Zhou, Renew. Energ. 36 (2011) 3332–3336.

    Article  Google Scholar 

  30. Y.L. Sui, Y.F. Guo, T. Jiang, G.Z. Qiu, J. Alloy. Compd. 706 (2017) 546–553.

    Article  Google Scholar 

  31. Y. Li, Basic research on gas-based reduction of Indonesia ironsand oxidized pellets, University of Science and Technology Beijing, Beijing, China, 2015.

    Google Scholar 

  32. H. Ono-Nakazato, T. Yonezawa, T. Usui, ISIJ Int. 43 (2003) 1502–1511.

    Article  Google Scholar 

  33. Z.Q. Guo, D.Q. Zhu, J. Pan, F. Zhang, Minerals 7 (2017) 98.

    Article  Google Scholar 

  34. Z.Q. Guo, D.Q. Zhu, J. Pan, C.C. Yang, Powder Technol. 329 (2018) 55–64.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the National Natural Science Foundation of China (No. 5157041410) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

Qiang Zhao conducted the experimental work and prepared the manuscript; Ji-lai Xue directed the research work and modified the manuscript; Wen Chen participated in the design of the research work at different stages.

Corresponding author

Correspondence to Ji-lai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Xue, Jl. & Chen, W. Mechanism of improved magnetizing roasting of siderite–hematite iron ore using a synergistic CO–H2 mixture. J. Iron Steel Res. Int. 27, 12–21 (2020). https://doi.org/10.1007/s42243-019-00242-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00242-w

Keywords

Navigation