Skip to main content
Log in

Numerical simulation and scaling analysis of elasticity-induced lift force in a viscoelastic fluid between confining surfaces

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

How to accurately characterize the lift force on the particles near the solid surfaces is an ongoing challenge in fluid mechanics and microfluidic techniques, especially in a complex system with viscoelastic fluid or/and soft surface that is commonly encountered in a biological system. The motions of the particles in vicinity of a surface can be simplified to be a rigid cylinder surrounded by the viscoelastic fluid moving along a substrate which can be rigid or soft according to different cases. In such an inertial free system with a wide range of Weissenberg number (Wi < 5.00, representing the ratio of the elastic force to the viscous force), firstly we numerically evaluate the influence of the systematic parameters, including the polymer viscosity, the geometry and Wi, on the net normal force for a cylinder closely moving along a rigid substrate, and the elasticity-induced lift force in a scaled form. It is shown that a strong shear arises in the viscoelastic confinement between the moving cylinder and the rigid substrate, it leads to the asymmetry of the first normal stress distribution around the cylinder, and thus the lift force. Then, the influence of a soft substrate on the lift force is considered, and we find that the lift force induced by the viscoelastic fluid always dominates in magnitude over that induced by the soft substrate deformation. This work provides a reliable scaling that can be utilized to quantify the elasticity-induced lift force on the particles in a viscoelastic system, such as the micro- and nanofluidic systems in biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rallabandi B., Oppenheimer N., Zion M. Y. B. et al. Membrane-induced hydroelastic migration of a particle surfing its own wave [J]. Nature Physics, 2018, 14(12): 1211–1215.

    Article  Google Scholar 

  2. Feng J., Weinbaum S. Lubrication theory in highly compressible porous media: The mechanics of skiing, from red cells to humans [J]. Journal of Fluid Mechanics, 2000, 422: 281–317.

    Article  MathSciNet  MATH  Google Scholar 

  3. Urzay J. Asymptotic theory of the elastohydrodynamic adhesion and gliding motion of a solid particle over soft and sticky substrates at low Reynolds numbers [J]. Journal of Fluid Mechanics, 2010, 653: 391–429.

    Article  MathSciNet  MATH  Google Scholar 

  4. Mani M., Gopinath A., Mahadevan L. How things get stuck: Kinetics, elastohydrodynamics, and soft adhesion [J]. Physical Review Letters, 2012, 108(22): 226104.

    Article  Google Scholar 

  5. Snoeijer J. H., Eggers J., Venner C. H. Similarity theory of lubricated Hertzian contacts [J]. Physics of Fluids, 2013, 25(10): 101705.

    Article  Google Scholar 

  6. Pandey A., Karpitschka S., Venner C. H. et al. Lubrication of soft viscoelastic solids [J]. Journal of Fluid Mechanics, 2016, 799: 433–447.

    Article  MathSciNet  MATH  Google Scholar 

  7. Segré G., Silberberg A. Radial particle displacements in Poiseuille flow of suspensions [J]. Nature, 1961, 189(4760): 209–210.

    Article  Google Scholar 

  8. Di Carlo D., Irimia D., Tompkins R. G. et al. Continuous inertial focusing, ordering, and separation of particles in microchannels [J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 18892–18897

    Article  Google Scholar 

  9. Di Carlo D. Inertial microfluidics [J]. Lab on a Chip, 2009, 9(21): 3038–3046.

    Article  Google Scholar 

  10. Clime L., Morton K. J., Hoa X. D. et al. Twin tubular pinch effect in curving confined flows [J]. Scientific Reports, 2015, 5(1): 1–9.

    Article  Google Scholar 

  11. Segre G., Silberberg A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation [J]. Journal of Fluid Mechanics, 1962, 14(1): 136–157.

    Article  MATH  Google Scholar 

  12. Liu C., Xue C., Sun J. et al. A generalized formula for inertial lift on a sphere in microchannels [J]. Lab on a Chip, 2016, 16(5): 884–892.

    Article  Google Scholar 

  13. Liu C., Guo J., Tian F. et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows [J]. ACS Nano, 2017, 11(7): 6968–6976.

    Article  Google Scholar 

  14. Feng J., Weinbaum S. Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans [J]. Journal of Fluid Mechanics, 2000, 422: 281–317.

    Article  MathSciNet  MATH  Google Scholar 

  15. Weissenberg K. The use of a trellis model in mechanics of homogeneous materials [J]. Journal of the Textile Institute Transactions, 1949, 40.

  16. Leshansky A. M., Bransky A., Korin N. et al. Tunable nonlinear viscoelastic “focusing” in a microfluidic device [J]. Physical Review Letters, 2007, 98(23): 234501.

    Article  Google Scholar 

  17. D’Avino G., Maffettone P. L. Particle dynamics in viscoelastic liquids [J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 215: 80–104.

    Article  MathSciNet  Google Scholar 

  18. Li G., McKinley G. H., Ardekani A. M. Dynamics of particle migration in channel flow of viscoelastic fluids [J]. Journal of Fluid Mechanics, 2015, 785: 486–505.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu Z., Wang P., Lin J. et al. Equilibrium positions of the elasto-inertial particle migration in rectangular channel flow of Oldroyd-B viscoelastic fluids [J]. Journal of Fluid Mechanics, 2019, 868: 316–340.

    Article  MathSciNet  MATH  Google Scholar 

  20. Paul S., Roy B., Banerjee A. Free and confined Brownian motion in viscoelastic Stokes—Oldroyd B fluids [J]. Journal of Physics: Condensed Matter, 2018, 30(34): 345101.

    Google Scholar 

  21. Fetecau C., Fetecau C., Vieru D. On some helical flows of Oldroyd-B fluids [J]. Acta Mechanica, 2007, 189(1): 53–63.

    Article  MATH  Google Scholar 

  22. Fetecau C. Analytical solutions for non-Newtonian fluid flows in pipe-like domains [J]. International Journal of Non-linear Mechanics, 2004, 39(2): 225–231.

    Article  MathSciNet  MATH  Google Scholar 

  23. Fetecau C. The Rayleigh—Stokes problem for an edge in an Oldroyd-B fluid [J]. Comptes Rendus Mathematique, 2002, 335(11): 979–984.

    Article  MathSciNet  MATH  Google Scholar 

  24. D’Avino G., Greco F., Maffettone P. L. Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices [J]. Annual Review of Fluid Mechanics, 2017, 49: 341–360.

    Article  MathSciNet  MATH  Google Scholar 

  25. Skotheim J. M., Mahadevan L. Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts [J]. Physics of Fluids, 2005, 17(9): 092101.

    Article  MathSciNet  MATH  Google Scholar 

  26. Skotheim J. M., Mahadevan L. Soft lubrication [J]. Physical Review Letters, 2004, 92(24): 245509.

    Article  Google Scholar 

  27. Salez T., Mahadevan L. Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall [J]. Journal of Fluid Mechanics, 2015, 779: 181–196.

    Article  MathSciNet  MATH  Google Scholar 

  28. Davies H. S., Débarre D., El Amri N. et al. Elastohydrodynamic lift at a soft wall [J]. Physical Review Letters, 2018, 120(19): 198001.

    Article  Google Scholar 

  29. Saintyves B., Jules T., Salez T. et al. Self-sustained lift and low friction via soft lubrication [J]. Proceedings of the National Academy of Sciences, 2016, 113(21): 5847–5849.

    Article  Google Scholar 

  30. Saintyves B., Rallabandi B., Jules T. et al. Rotation of a submerged finite cylinder moving down a soft incline [J]. Soft Matter, 2020, 16(16): 4000–4007.

    Article  Google Scholar 

  31. Zhang Z., Bertin V., Arshad M. et al. Direct measurement of the elastohydrodynamic lift force at the nanoscale [J]. Physical Review Letters, 2020, 124(5): 054502.

    Article  Google Scholar 

  32. Thomases B., Shelley M. Emergence of singular structures in Oldroyd-B fluids [J]. Physics of Fluids, 2007, 19(10): 103103.

    Article  MATH  Google Scholar 

  33. Isaacson E. Some periodic solutions of the two-dimensional Stokes-Oldroyd-B system with stress diffusion [R]. Berkeley, USA: University of California, Berkeley, 2012.

    Google Scholar 

  34. Oldroyd J. G. On the formulation of rheological equations of state [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 200(1063): 523–541.

    MathSciNet  MATH  Google Scholar 

  35. Ebagninin K. W., Benchabane A., Bekkour K. Rheological characterization of poly (ethylene oxide) solutions of different molecular weights [J]. Journal of Colloid and Interface Science, 2009, 336(1): 360–367.

    Article  Google Scholar 

  36. Jin L., Shangguan Y., Ye T. et al. Shear induced self-thickening in chitosan-grafted polyacrylamide aqueous solution [J]. Soft Matter, 2013, 9(6): 1835–1843.

    Article  Google Scholar 

  37. Leroy S., Steinberger A., Cottin-Bizonne C. et al. Hydrodynamic interaction between a spherical particle and an elastic surface: A gentle probe for soft thin films [J]. Physical Review Letters, 2012, 108(26): 264501.

    Article  Google Scholar 

  38. Huilgol R. R., Rhan-Thien N. Fluid mechanics of viscoelasticity: General principles constitutive modelling, analytical and numerical techniques [M]. Amsterdam, The Netherlands: Elsevier, 1997.

    Google Scholar 

Download references

Acknowledgement

The authors also thank Prof. Dong-shi Guan, Prof. Xu Zheng for useful discussion in manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wei.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 51875039).

Biography: Xin Zhao (1991-), Female, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wei, C. Numerical simulation and scaling analysis of elasticity-induced lift force in a viscoelastic fluid between confining surfaces. J Hydrodyn 34, 756–766 (2022). https://doi.org/10.1007/s42241-022-0061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0061-0

Key words

Navigation