Skip to main content
Log in

A CAD-compatible body-fitted particle generator for arbitrarily complex geometry and its application to wave-structure interaction

  • Special Column on the 4th CMHL Symposium 2021 (Guest Editor Decheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Generating body-fitted particle distribution for arbitrarily complex geometry underpins the applications of particle-based method to engineering and bioengineering and is highly challenging, and thus hinders the potential of particle methods. In this paper, we present a new computer-aided design (CAD) compatible body-fitted particle generator, termed as CAD-BPG, for arbitrarily complex 3-D geometry. By parsing a CAD model, the present method can accurately tackle arbitrarily complex geometry representation and describe the corresponding geometry surface by constructing an implicit zero level-set function on Cartesian background mesh. To achieve a body-fitted and isotropic particle distribution, physics-driven relaxation process with surface bounding governed by the transport-velocity formulation of smoothed particle hydrodynamics (SPH) methodology is conducted to characterize the particle evolution. A set of examples, ranging from propeller, stent structures and anatomical heart models, show simplicity, accuracy and versatility of the present CAD-BPG for generating body-fitted particle distribution of arbitrarily complex 3-D geometry. Last but not least, the present CAD-BPG is applied for modeling wave-structure interaction, where wave interaction with an oscillating wave surge converter is studied, and the results show that the present method not only provides an efficient and easy-to-implement pre-processing tool for particle-based simulation but also improves the numerical accuracy compared with lattice particle distribution. Consequently, the propose CAD-BPG sheds light on simulating real-world applications by particle-based methods for researchers and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389.

    Article  Google Scholar 

  2. Lucy L. B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82: 1013–1024.

    Article  Google Scholar 

  3. Koshizuka S., Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid [J]. Nuclear Science and Engineering, 1996, 123(3): 421–434.

    Article  Google Scholar 

  4. Mishra B. K., Rajamani R. K. The discrete element method for the simulation of ball mills [J]. Applied Mathematical Modelling, 1992, 16(11): 598–604.

    Article  Google Scholar 

  5. Monaghan J. J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399–406.

    Article  Google Scholar 

  6. Hu X. Y., Adams N. A. A multi-phase SPH method for macroscopic and mesoscopic flows [J]. Journal of Computational Physics, 2006, 213(2): 844–861.

    Article  MathSciNet  Google Scholar 

  7. Monaghan J. J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290–311.

    Article  Google Scholar 

  8. Zhang C., Hu X. Y., Adams N. A. A weakly compressible SPH method based on a low-dissipation Riemann solver [J]. Journal of Computational Physics, 2017, 335: 605–620.

    Article  MathSciNet  Google Scholar 

  9. Zhang C., Xiang G. M., Wang B. et al. A weakly compressible SPH method with WENO reconstruction [J]. Journal of Computational Physics, 2019, 392: 1–18.

    Article  MathSciNet  Google Scholar 

  10. Benz W., Asphaug E. Simulations of brittle solids using smooth particle hydrodynamics [J]. Computer Physics Communications, 1995, 87(1-2): 253–265.

    Article  Google Scholar 

  11. Libersky L. D., Petschek A. G. Smooth particle hydrodynamics with strength of materials (Larry D., Libersky A., Petschek G. Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method) [M]. Berlin, Heidelberg, Germany: Springer, 1991, 248–257.

    Chapter  Google Scholar 

  12. Randles P. W., Libersky L. D. Smoothed particle hydrodynamics: Some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 375–408.

    Article  MathSciNet  Google Scholar 

  13. Zhang C., Hu X., Adams N. A. A generalized transportvelocity formulation for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2017, 337: 216–232.

    Article  MathSciNet  Google Scholar 

  14. Ye T., Pan D., Huang C. et al. Smoothed particle hydro-dynamics (SPH) for complex fluid flows: Recent developments in methodology and applications [J]. Physics of Fluids, 2019, 31(1): 011301.

    Article  Google Scholar 

  15. Zhang C., Rezavand M., Hu X. A multi-resolution SPH method for fluid-structure interactions [J]. Journal of Computational Physics, 2021, 429: 110028.

    Article  MathSciNet  Google Scholar 

  16. Gotoh H., Khayyer A. On the state-of-the-art of particle methods for coastal and ocean engineering [J]. Coastal Engineering Journal, 2018, 60(1): 79–103.

    Article  Google Scholar 

  17. Siemann M. H., Ritt S. A. Novel particle distributions for SPH bird-strike simulations [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 343: 746–766.

    Article  MathSciNet  Google Scholar 

  18. Alimirzazadeh S., Kumashiro T., Leguizamón S. et al. GPU-accelerated numerical analysis of jet interference in a six-jet Pelton turbine using finite volume particle method [J]. Renewable Energy, 2020, 148: 234–246.

    Article  Google Scholar 

  19. Ji Z., Stanic M., Hartono E. A. et al. Numerical simulations of oil flow inside a gearbox by smoothed particle hydrodynamics (SPH) method [J]. Tribology International, 2018, 127: 47–58.

    Article  Google Scholar 

  20. Zhang C., Wei Y., Dias F. et al. An efficient fully Lagrangian solver for modeling wave interaction with oscillating wave energy converter [EB/OL]. arXiv preprint, 2020, arXiv:2012.05323.

    Google Scholar 

  21. Crespo A. J. C., Hall M., Domínguez J. M. et al. Floating moored oscillating water column with meshless SPH method [C]. ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madird, Spain, 2018.

    Google Scholar 

  22. Zhang C., Wang J., Rezavand M. et al. An integrative smoothed particle hydrodynamics framework for modeling cardiac function [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 381: 113847.

    Article  MathSciNet  Google Scholar 

  23. Zhang C., Zhu Y., Yu Y. et al. A simple artificial damping method for total Lagrangian smoothed particle hydrodynamics [EB/OL]. arXiv preprint, 2021, arXiv:2102.04898.

    Google Scholar 

  24. Domínguez J. M., Crespo A. J. C., Barreiro A. et al. Development of a new pre-processing tool for SPH models with complex geometries [C]. 6th International SPHERIC workshop, Hamburg, Germany, 2011, 117–124.

    Google Scholar 

  25. Vignjevic R., Orlowski M., De Vuyst T. et al. A parametric study of bird strike on engine blades [J]. International Journal of Impact Engineering, 2013, 60: 44–57.

    Article  Google Scholar 

  26. Heimbs S. Computational methods for bird strike simulations: A review [J]. Computers and Structures, 2011, 89(23-24): 2093–2112.

    Article  Google Scholar 

  27. Diehl S., Rockefeller G., Fryer C. L. et al. Generating optimal initial conditions for smoothed particle hydrodynamics simulations [J]. Publications of the Astronomical Society of Australia, 2015, 32: e048.

    Article  Google Scholar 

  28. Vela L. V., Sanchez R., Geiger J. ALARIC: An algorithm for constructing arbitrarily complex initial density distributions with low particle noise for SPH/SPMHD applications [J]. Computer Physics Communications, 2018, 224: 186–197.

    Article  MathSciNet  Google Scholar 

  29. Fu L., Ji Z. An optimal particle setup method with Centroidal Voronoi Particle dynamics [J]. Computer Physics Communications, 2019, 234: 72–92.

    Article  Google Scholar 

  30. Adami S., Hu X. Y., Adams N. A. A transport-velocity formulation for smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2013, 241: 292–307.

    Article  MathSciNet  Google Scholar 

  31. Zhang C., Rezavand M., Zhu Y. et al. SPHinXsys: An open-source meshless, multi-resolution and multi-physics library [J]. Software Impacts, 2020, 6: 100033.

    Article  Google Scholar 

  32. Sherman M. A., Seth A., Delp S. L. Simbody: Multibody dynamics for biomedical research [J]. Procedia IUTAM, 2011, 2: 241–261.

    Article  Google Scholar 

  33. Osher S., Sethian J. A. Fronts propagating with curvaturedependent speed: Algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49.

    Article  MathSciNet  Google Scholar 

  34. Fu L., Han L., Hu X. et al. An isotropic unstructured mesh generation method based on a fluid relaxation analogy [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 396–431.

    Article  MathSciNet  Google Scholar 

  35. Litvinov S., Hu X. Y., Adams N. A. Towards consistence and convergence of conservative SPH approximations [J]. Journal of Computational Physics, 2015, 301: 394–401.

    Article  MathSciNet  Google Scholar 

  36. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree [J]. Advances in computational Mathematics, 1995, 4(1): 389–396.

    Article  MathSciNet  Google Scholar 

  37. Quarteroni A., Lassila T., Rossi S. et al. Integrated heart? Coupling multiscale and multiphysics models for the simulation of the cardiac function [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 314: 345–407.

    Article  MathSciNet  Google Scholar 

  38. Wei Y., Rafiee A., Henry A. et al. Wave interaction with an oscillating wave surge converter, part I: Viscous effects [J]. Ocean Engineering, 2015, 104: 185–203.

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by the National Natural Science Foundation of China (Grant No. 91952110), the Deutsche Forschungsgemeinschaft under (Grant Nos. DFG HU1572/10-1, DFG HU1527/12-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi Zhang or Xiangyu Hu.

Additional information

Biography: Yujie Zhu (1992-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zhang, C., Yu, Y. et al. A CAD-compatible body-fitted particle generator for arbitrarily complex geometry and its application to wave-structure interaction. J Hydrodyn 33, 195–206 (2021). https://doi.org/10.1007/s42241-021-0031-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0031-y

Key words

Navigation