Skip to main content
Log in

Properties of Collagen/Sodium Alginate Hydrogels for Bioprinting of Skin Models

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

3D printing technology has great potential for the reconstruction of human skin. However, the reconstructed skin has some differences from natural skin, largely because the hydrogel used does not have the appropriate biological and physical properties to allow healing and regeneration. This study examines the swelling, degradability, microstructure and biological properties of Collagen/Sodium Alginate (Col/SA) hydrogels of differing compositions for the purposes of skin printing. Increasing the content of sodium alginate causes the hydrogel to exhibit stronger mechanical and swelling properties, a faster degradation ratio, smaller pore size, and less favorable biological properties. An optimal 1% collagen hydrogel was used to print bi-layer skin in which fibroblasts and keratinocytes showed improved spreading and proliferation as compared to other developed formulations. The Col/SA hydrogels presented suitable tunability and properties to be used as a bioink for bioprinting of skin aiming at finding applications as 3D models for wound healing research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Weng, T. T., Zhang, W., Xia, Y. L., Wu, P., Yang, M., Jin, R. H., Xia, S. Z., Wang, J. L., You, C. L., Han, C. M., & Wang, X. G. (2021). 3D bioprinting for skin tissue engineering: Current status and perspectives. Journal of Tissue Engineering, 12, 20417314211028576. https://doi.org/10.1177/20417314211028574

    Article  Google Scholar 

  2. Hosseini, M., & Shafiee, A. (2021). Engineering bioactive scaffolds for skin regeneration. Small (Weinheim an der Bergstrasse, Germany), 17, 2101384. https://doi.org/10.1002/smll.202101384

    Article  Google Scholar 

  3. Zidaric, T., Milojevic, M., Gradisnik, L., Kleinschek, K. S., Maver, U., & Maver, T. (2020). Polysaccharide-based bioink formulation for 3D bioprinting of an in vitro model of the human dermis. Nanomaterials, 10, 733. https://doi.org/10.3390/nano10040733

    Article  Google Scholar 

  4. Zhang, X., Yao, D., Zhao, W. Y., Zhang, R., Yu, B. R., Ma, G. P., Li, Y., Hao, D. F., & Xu, F. J. (2020). Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value. Advanced Functional Materials, 31, 2009258. https://doi.org/10.1002/adfm.202009258

    Article  Google Scholar 

  5. Tavakoli, S., & Klar, A. S. (2021). Bioengineered skin substitutes: Advances and future trends. Applied Sciences, 11, 1493. https://doi.org/10.3390/app11041493

    Article  Google Scholar 

  6. Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., & Conti, B. (2020). Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 12, 735. https://doi.org/10.3390/pharmaceutics12080735

    Article  Google Scholar 

  7. Lian, Q., Jiao, T., Zhao, T. Z., Wang, H. C., Yang, S. M., & Li, D. C. (2021). 3D bioprinted skin substitutes for accelerated wound healing and reduced scar. Journal of Bionic Engineering, 18, 900–914. https://doi.org/10.1007/s42235-021-0053-8

    Article  Google Scholar 

  8. Liu, T., Qiu, C., Ben, C., Li, H. H., & Zhu, S. H. (2019). One-step approach for full-thickness skin defect reconstruction in rats using minced split-thickness skin grafts with Pelnac overlay. Burns Trauma, 7, 19. https://doi.org/10.1186/s41038-019-0157-0

    Article  Google Scholar 

  9. Mohamed Haflah, N. H., Ng, M. H., Mohd Yunus, M. H., Naicker, A. S., Htwe, O., Abdul Razak, K. A., & Idrus, R. (2018). Massive traumatic skin defect successfully treated with autologous, bilayered, tissue-engineered myderm skin substitute. JBJS Case Connector, 8, e38. https://doi.org/10.2106/JBJS.CC.17.00250

    Article  Google Scholar 

  10. Varkey, M., Visscher, D. O., van Zuijlen, P. P. M., Atala, A., & Yoo, J. J. (2019). Skin bioprinting: the future of burn wound reconstruction? Burns & Trauma, 7, 4. https://doi.org/10.1186/S41038-019-0142-7

    Article  Google Scholar 

  11. Jin, R. H., Cui, Y. C., Chen, H. J., Zhang, Z. Z., Weng, T. T., Xia, S. Z., Yu, M. R., Zhang, W., Shao, J. M., Yang, M., Han, C. M., & Wang, X. G. (2021). Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Acta Biomaterialia, 131, 248–261. https://doi.org/10.1016/j.actbio.2021.07.012

    Article  Google Scholar 

  12. Xu, J., Zheng, S. S., Hu, X. Y., Li, L. Y., Li, W. F., Parungao, R., Wang, Y. W., Nie, Y., Liu, T. Q., & Song, K. D. (2020). Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers, 12, 1237. https://doi.org/10.3390/polym12061237

    Article  Google Scholar 

  13. Jakus, A. E., Rutz, A. L., & Shah, R. N. (2016). Advancing the field of 3D biomaterial printing. Biomedical Materials, 11, 014102. https://doi.org/10.1088/1748-6041/11/1/014102

    Article  Google Scholar 

  14. Zhao, G. R., Cui, R. W., Chen, Y., Zhou, S. J., Wang, C., Hu, Z. M., Zheng, X. K., Li, M. H., & Qu, S. X. (2020). 3D Printing of well dispersed electrospun PLGA fiber toughened calcium phosphate scaffolds for osteoanagenesis. Journal of Bionic Engineering, 17, 652–668. https://doi.org/10.1007/s42235-020-0051-2

    Article  Google Scholar 

  15. Yao, B., Wang, R., Wang, Y. H., Zhang, Y. J., Hu, T., Song, W., Li, Z., Huang, S., & Fu, X. B. (2020). Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration. Science Advances, 6, eaaz1094.

    Article  Google Scholar 

  16. Zhou, F. F., Hong, Y., Liang, R. J., Zhang, X., Liao, Y. G., Jiang, D. M., Zhang, J. Y., Sheng, Z. X., Xie, C., Peng, Z., Zhuang, X. H., Bunpetch, V., Zou, Y. W., Huang, W. W., Zhang, Q., Alakpa, E. V., Zhang, S. F., & Ouyang, H. W. (2020). Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials, 258, 120287. https://doi.org/10.1016/j.biomaterials.2020.120287

    Article  Google Scholar 

  17. Lee, W., Debasitis, J. C., Lee, V. K., Lee, J. H., Fischer, K., Edminster, K., Park, J. K., & Yoo, S. S. (2009). Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials, 30, 1587–1595. https://doi.org/10.1016/j.biomaterials.2008.12.009

    Article  Google Scholar 

  18. Koch, L., Deiwick, A., Schlie, S., Michael, S., Gruene, M., Coger, V., Zychlinski, D., Schambach, A., Reimers, K., Vogt, P. M., & Chichkov, B. (2012). Skin tissue generation by laser cell printing. Biotechnology and Bioengineering, 109, 1855–1863. https://doi.org/10.1002/bit.24455

    Article  Google Scholar 

  19. Lee, V., Singh, G., Trasatti, J. P., Bjornsson, C., Xu, X. W., Tran, T. N., Yoo, S. S., Dai, G. H., & Karande, P. (2014). Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering: Part C, 20, 473–484. https://doi.org/10.1089/ten.tec.2013.0335

    Article  Google Scholar 

  20. Pereira, R. F., Barrias, C. C., Bártolo, P. J., & Granja, P. L. (2018). Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomaterialia, 66, 282–293. https://doi.org/10.1016/j.actbio.2017.11.016

    Article  Google Scholar 

  21. Kim, B. S., Ahn, M., Cho, W. W., Gao, G., Jang, J., & Cho, D. W. (2021). Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials, 272, 120776. https://doi.org/10.1016/j.biomaterials.2021.120776

    Article  Google Scholar 

  22. Kim, G. H., Ahn, S., Kim, Y. Y., Cho, Y., & Chun, W. (2011). Coaxial structured collagen-alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. Journal of Materials Chemistry, 21, 6165–6172. https://doi.org/10.1039/c0jm03452e

    Article  Google Scholar 

  23. Park, J. A., Lee, H. R., Park, S. Y., & Jung, S. (2020). Self-organization of fibroblast-laden 3D collagen microstructures from inkjet-printed cell patterns. Advanced Biosystems, 4, 1900280. https://doi.org/10.1002/adbi.201900280

    Article  Google Scholar 

  24. Shi, L., Xiong, L. M., Hu, Y. Q., Li, W. C., Chen, Z. C., Liu, K., & Zhang, X. L. (2018). Three-dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering. Polymer Engineering & Science, 58, 1782–1790. https://doi.org/10.1002/pen.24779

    Article  Google Scholar 

  25. Kim, B. S., Kwon, Y. W., Kong, J. S., Park, G. T., Gao, G., Han, W., Kim, M. B., Lee, H., Kim, J. H., & Cho, D. W. (2018). 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials, 168, 38–53. https://doi.org/10.1016/j.biomaterials.2018.03.040

    Article  Google Scholar 

  26. Admane, P., Gupta, A. C., Jois, P., Roy, S., Lakshmanan, C. C., Kalsi, G., Bandyopadhyay, B., & Ghosh, S. (2019). Direct 3D bioprinted full-thickness skin constructs recapitulate regulatory signaling pathways and physiology of human skin. Bioprinting, 15, e00051. https://doi.org/10.1016/j.bprint.2019.e00051

    Article  Google Scholar 

  27. Pourchet, L. J., Thepot, A., Albouy, M., Courtial, E. J., Boher, A., Blum, L. J., & Marquette, C. A. (2017). Human skin 3D bioprinting using scaffold-free approach. Advanced Healthcare Materials, 6, 1601101. https://doi.org/10.1002/adhm.201601101

    Article  Google Scholar 

  28. Cubo, N., Garcia, M., Canizo, J. F. D., Velasco, D., & Jorcano, J. L. (2017). 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication, 9, 015006. https://doi.org/10.1088/1758-5090/9/1/015006

    Article  Google Scholar 

  29. Derr, K., Zou, J., Luo, K., Song, M. J., Sittampalam, G. S., Zhou, C., Michael, S., Ferrer, M., & Derr, P. (2019). Fully three-dimensional bioprinted skin equivalent constructs with validated morphology and barrier function. Tissue Engineering: Part C, 25, 334–343. https://doi.org/10.1089/ten.tec.2018.0318

    Article  Google Scholar 

  30. Kim, B. S., Gao, G., Kim, J. Y., & Cho, D. W. (2018). 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Advanced Healthcare Materials, 8, 1801019. https://doi.org/10.1002/adhm.201801019

    Article  Google Scholar 

  31. Jorgensen, A. M., Varkey, M., Gorkun, A., Clouse, C., Xu, L., Chou, Z., Murphy, S., Molnar, J., Lee, S. J., Yoo, J. J., Soker, S., & Atala, A. (2020). Bioprinted skin recapitulates normal collagen remodeling in full-thickness wounds. Tissue Engineering: Part A, 26, 512–526. https://doi.org/10.1089/ten.tea.2019.0319

    Article  Google Scholar 

  32. Kim, B. S., Lee, J. S., Gao, G., & Cho, D. W. (2017). Direct 3D cell-printing of human skin with functional transwell system. Biofabrication, 9, 025034. https://doi.org/10.1088/1758-5090/aa71c8

    Article  Google Scholar 

  33. Albanna, M., Binder, K. W., Murphy, S. V., Kim, J., Qasem, S. A., Zhao, W. X., Tan, J., El-Amin, I. B., Dice, D. D., Marco, J., Green, J., Xu, T., Skardal, A., Holmes, J. H., Jackson, J. D., Atala, A., & Yoo, J. J. (2019). In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Scientific Reports, 9, 1856. https://doi.org/10.1038/S41598-018-38366-W

    Article  Google Scholar 

  34. Liu, X., Michael, S., Bharti, K., Ferrer, M., & Song, M. J. (2020). A biofabricated vascularized skin model of atopic dermatitis for preclinical studies. Biofabrication, 12, 035002. https://doi.org/10.1088/1758-5090/ab76a1

    Article  Google Scholar 

  35. Baltazar, T., Merola, J., Catarino, C. M., Xie, C. B., Kirkiles-Smith, N., Lee, V., Hotta, S. Y. K., Dai, G., Xu, X., Ferreira, F. C., Saltzman, W. M., Pober, J. S., & Karande, P. (2019). Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Engineering: Part A, 26, 227–238. https://doi.org/10.1089/ten.tea.2019.0201

    Article  Google Scholar 

  36. Ng, W. L., Qi, J. T. Z., Yeong, W. Y., & Naing, M. W. (2018). Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication, 10, 025005. https://doi.org/10.1088/1758-5090/aa9e1e

    Article  Google Scholar 

  37. Min, D., Lee, W., Bae, I. H., Lee, T. R., Croce, P., & Yoo, S. S. (2017). Bioprinting of biomimetic skin containing melanocytes. Experimental Dermatology, 27, 453–459. https://doi.org/10.1111/exd.13376

    Article  Google Scholar 

  38. DeBruler, D. M., Zbinden, J. C., Baumann, M. E., Blackstone, B. N., Malara, M. M., Bailey, J. K., Supp, D. M., & Powell, H. M. (2018). Early cessation of pressure garment therapy results in scar contraction and thickening. PLoS ONE, 13, e0197558. https://doi.org/10.1371/journal.pone.0197558

    Article  Google Scholar 

  39. Yoon, H., Lee, J. S., Yim, H., Kim, G., & Chun, W. (2016). Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. RSC Advances, 6, 21439–21447. https://doi.org/10.1039/c5ra19532b

    Article  Google Scholar 

  40. Cheng, R. Y., Eylert, G., Gariepy, J. M., He, S., Ahmad, H., Gao, Y., Priore, S., Hakimi, N., Jeschke, M. G., & Gunther, A. (2020). Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns. Biofabrication, 12, 025002. https://doi.org/10.1088/1758-5090/ab6413

    Article  Google Scholar 

  41. Wang, R., Wang, Y. H., Yao, B., Hu, T., Li, Z., Huang, S., & Fu, X. B. (2019). Beyond 2D: 3D bioprinting for skin regeneration. International Wound Journal, 16, 134–138. https://doi.org/10.1111/iwj.13003

    Article  Google Scholar 

  42. Chouhan, D., Dey, N., Bhardwaj, N., & Mandal, B. B. (2019). Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials, 216, 119267. https://doi.org/10.1016/j.biomaterials.2019.119267

    Article  Google Scholar 

  43. Yannas, I. V., Tzeranis, D., & So, P. T. (2015). Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomedical Materials, 11, 014106. https://doi.org/10.1088/1748-6041/11/1/014106

    Article  Google Scholar 

  44. Yannas, I. V., Tzeranis, D. S., & So, P. T. C. (2017). Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair and Regeneration, 25, 177–191. https://doi.org/10.1111/wrr.12516

    Article  Google Scholar 

  45. Yannas, I. V., Tzeranis, D. S., & So, P. T. C. (2018). Regeneration mechanism for skin and peripheral nerves clarified at the organ and molecular scales. Current Opinion in Biomedical Engineering, 6, 1–7. https://doi.org/10.1016/j.cobme.2017.12.002

    Article  Google Scholar 

  46. Perez-Valle, A., Del Amo, C., & Andia, I. (2020). Overview of current advances in extrusion bioprinting for skin applications. International Journal of Molecular Sciences, 21, 6679. https://doi.org/10.3390/ijms21186679

    Article  Google Scholar 

  47. Vanaei, S., Parizi, M. S., Vanaei, S., Salemizadehparizi, F., & Vanaei, H. R. (2021). An overview on materials and techniques in 3D bioprinting toward biomedical application. Engineered Regeneration, 2, 1–18. https://doi.org/10.1016/j.engreg.2020.12.001

    Article  Google Scholar 

  48. Gibney, R., Patterson, J., & Ferraris, E. (2021). High-resolution bioprinting of recombinant human collagen type III. Polymers, 13, 2973. https://doi.org/10.3390/polym13172973

    Article  Google Scholar 

  49. Wang, L., Shelton, R. M., Cooper, P. R., Lawson, M., Triffitt, J. T., & Barralet, J. E. (2003). Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 24, 3475–3481. https://doi.org/10.1016/s0142-9612(03)00167-4

    Article  Google Scholar 

  50. Kollman, J. M., Pandi, L., Sawaya, M. R., Riley, M., & Doolittle, R. F. (2009). Crystal structure of human fibrinogen. Biochemistry, 48, 3877–3886. https://doi.org/10.1021/bi802205g

    Article  Google Scholar 

  51. Kaijzel, E. L., Koolwijk, P., Erck, M. G. M. V., Hinsbergh, V. W. M. V., & Maat, M. P. M. D. (2006). Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. Journal of Thrombosis and Haemostasis, 4, 1975–7981.

    Article  Google Scholar 

  52. Rittié, L. (2017). Type I collagen purification from rat tail tendons. Methods in Molecular Biology, 1627, 287–308. https://doi.org/10.1007/978-1-4939-7113-8_19

    Article  Google Scholar 

  53. Amirian, J., Zeng, Y., Shekh, M. I., Sharma, G., Stadler, F. J., Song, J., Du, B., & Zhu, Y. (2021). In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing. Carbohydrate Polymers, 251, 117005. https://doi.org/10.1016/j.carbpol.2020.117005

    Article  Google Scholar 

  54. Zhang, Y., Chen, H. G., Li, Y. L., Fang, A., Wu, T. F., Shen, C. Y., Zhao, Y. Y., & Zhang, G. Z. (2020). A transparent sericin-polyacrylamide interpenetrating network hydrogel as visualized dressing material. Polymer Testing, 87, 106517. https://doi.org/10.1016/j.polymertesting.2020.106517

    Article  Google Scholar 

  55. Bulcke, A. I. V. D., Bogdanov, B., Rooze, N. D., Schacht, E. H., Cornelissen, M., & Berghmans, H. (2000). Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1, 31–38.

    Article  Google Scholar 

  56. Raafat, A. I., El-Sawy, N. M., Badawy, N. A., Mousa, E. A., & Mohamed, A. M. (2018). Radiation fabrication of Xanthan-based wound dressing hydrogels embedded ZnO nanoparticles: In vitro evaluation. International Journal of Biological Macromolecules, 118, 1892–1902. https://doi.org/10.1016/j.ijbiomac.2018.07.031

    Article  Google Scholar 

  57. Shefa, A. A., Amirian, J., Kang, H. J., Bae, S. H., Jung, H. I., Choi, H. J., Lee, S. Y., & Lee, B. T. (2017). In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Carbohydrate Polymers, 177, 284–296. https://doi.org/10.1016/j.carbpol.2017.08.130

    Article  Google Scholar 

  58. Liu, J., Li, J., Yu, F., Zhao, Y. X., Mo, X. M., & Pan, J. F. (2020). In situ forming hydrogel of natural polysaccharides through schiff base reaction for soft tissue adhesive and hemostasis. International Journal of Biological Macromolecules, 147, 653–666. https://doi.org/10.1016/j.ijbiomac.2020.01.005

    Article  Google Scholar 

  59. Brown, B. N., & Badylak, S. F. (2014). Biocompatibility and immune response to biomaterials. Regenerative Medicine Applications in Organ Transplantation, 11, 151–162. https://doi.org/10.1016/b978-0-12-398523-1.00011-2

    Article  Google Scholar 

  60. Beiki, B., Zeynali, B., & Seyedjafari, E. (2017). Fabrication of a three dimensional spongy scaffold using human Wharton’s jelly derived extra cellular matrix for wound healing. Materials Science and Engineering: C, 78, 627–638. https://doi.org/10.1016/j.msec.2017.04.074

    Article  Google Scholar 

  61. Li, H. J., Tan, Y. J., Leong, K. F., & Li, L. (2017). 3D bioprinting of highly thixotropic alginate/methylcellulose hydrogel with strong interface bonding. ACS Applied Materials & Interfaces, 9, 20086–20097. https://doi.org/10.1021/acsami.7b04216

    Article  Google Scholar 

  62. Yoon, S., Park, J. A., Lee, H. R., Yoon, W. H., Hwang, D. S., & Jung, S. (2018). Inkjet-spray hybrid printing for 3D freeform fabrication of multilayered hydrogel structures. Advanced Healthcare Materials, 7, 1800050. https://doi.org/10.1002/adhm.201800050

    Article  Google Scholar 

  63. Labroo, P., Irvin, J., Johnson, J., Sieverts, M., Miess, J., Robinson, I., Baetz, N., Garrett, C., & Sopko, N. (2020). Physical characterization of swine and human skin: Correlations between Raman spectroscopy, Tensile testing, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), and Multiphoton microscopy (MPM). Skin Research and Technology, 27, 501–510. https://doi.org/10.1111/srt.12976

    Article  Google Scholar 

  64. Osidak, E. O., Karalkin, P. A., Osidak, M. S., Parfenov, V. A., Sivogrivov, D. E., Pereira, F. D. A. S., Gryadunova, A. A., Koudan, E. V., Khesuani, Y. D., Кasyanov, V. A., Belousov, S. I., Krasheninnikov, S. V., Grigoriev, T. E., Chvalun, S. N., Bulanova, E. A., Mironov, V. A., & Domogatsky, S. P. (2019). Viscoll collagen solution as a novel bioink for direct 3D bioprinting. Journal of Materials Science: Materials in Medicine, 30, 31. https://doi.org/10.1007/s10856-019-6233-y

    Article  Google Scholar 

  65. Govindharaj, M., Roopavath, U. K., & Rath, S. N. (2019). Valorization of discarded Marine Eel fish skin for collagen extraction as a 3D printable blue biomaterial for tissue engineering. Journal of Cleaner Production, 230, 412–419. https://doi.org/10.1016/j.jclepro.2019.05.082

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key R&D Program of China (2018YFE0207900), and People's Liberation Army (BWS17J036, 18-163-13-ZT-003-011-01) and the National Natural Science Foundation of China (51835010 and 51375371), and Xi’an Science and Technology Plan Project (21ZCZZHXJS-QCY6-0012). Shaanxi Science and Technology Project (2022KXJ-147). Thanks to Shi Changquan and Yang Chuncheng of Shaanxi Ketao-AM Technology Co., Ltd. for their technical support for printing equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Lian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, T., Lian, Q., Lian, W. et al. Properties of Collagen/Sodium Alginate Hydrogels for Bioprinting of Skin Models. J Bionic Eng 20, 105–118 (2023). https://doi.org/10.1007/s42235-022-00251-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00251-8

Keywords

Navigation