Skip to main content
Log in

The Comparative Study of Gelatin/CNT-contained Mg-Ca-P Bone Cement with the Plain and CNT-reinforced Ones

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Mimicking compositional and constructional features of the extracellular matrix (ECM) is an effective parameter in improving the biological response of biomaterials. In this regard, carbon nanotube (CNT) and gelatin were added to magnesium-calcium phosphate cement (CNG) to mimic fibrillar construction and organic composition of ECM, respectively, besides the CNG performance was compared with the plain and CNT-reinforced cement. Cementation behavior of the cements was investigated by evaluating their setting time, cement composition variation during setting, and viscosity fluctuation. Furthermore, compressive strength, degradation, and cell response of the cements were compared. Adding 5 wt.% gelatin reduced setting time about 60%, because of gel formation, not due to struvite precipitation. Moreover, the gelatin decreased compressive strength by about 20%. Although gelatin decreased compressive strength, the strength remained in the range attributed to trabecular bone. All the types of cement indicated shear thinning behavior that made their injectability feasible. Compared to other types of cement, CNG enhanced proliferation and differentiation of mesenchymal stem cells besides faster degradation, nontoxicity and suitable cell adhesion. Hence, mimicking features of CNG enhanced osteoconductivity and osteoinductivity of the cement compared to the plain one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stevens M M. Biomaterials for bone tissue engineering. Materials Today, 2008, 11, 18–25.

    Article  Google Scholar 

  2. Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Bioinspired structural materials. Nature Materials, 2015, 14, 23–36.

    Article  Google Scholar 

  3. Shekaran A, García A J. Extracellular matrix-mimetic adhesive biomaterials for bone repair. Journal of Biomedical Materials Research Part A, 2011, 96 A, 261–272.

    Article  Google Scholar 

  4. Freshney R I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2010, 33.

    Book  Google Scholar 

  5. Karp G. Cell and Molecular Biology: Concepts and Experiments, 7th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2013, 236.

    Google Scholar 

  6. Rezaie H R, Esnaashary M H, Karfarma M, Öchsner A. Bone Cement: From Simple Cement Concepts to Complex Biomimetic Design, Springer, Cham, Switzerland, 2020, 84.

    Book  Google Scholar 

  7. Esnaashary M H, Fathi M H, Ahmadian M. The effect of the two-step sintering process on consolidation of fluoridated hydroxyapatite and its mechanical properties and bioactivity. International Journal of Applied Ceramic Technology, 2014, 11, 47–56.

    Article  Google Scholar 

  8. Esnaashary M H, Fathi M H, Ahmadian M. In vitro evaluation of human osteoblast-like cell proliferation and attachment on nanostructured fluoridated hydroxyapatite. Biotechnology Letters, 2014, 36, 1343–1347.

    Article  Google Scholar 

  9. Ginebra M P, Fernández E, De Maeyer E A, Verbeeck R M, Boltong M G, Ginebra J, Driessens F C, Planell J A. Setting reaction and hardening of an apatitic calcium phosphate cement. Journal of Dental Research, 1997, 76, 905–912.

    Article  Google Scholar 

  10. Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: Brushite and monetite. Acta Biomaterialia, 2012, 8, 474–487.

    Article  Google Scholar 

  11. Grossardt C, Ewald A, Grover L M, Barralet J E, Gbureck U. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Engineering Part A, 2010, 16, 3687–3695.

    Article  Google Scholar 

  12. Ewald A, Helmschrott K, Knebl G, Mehrban N, Grover L M, Gbureck U. Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 96 B, 326–332.

    Article  Google Scholar 

  13. Ostrowski N, Roy A, Kumta P N. Magnesium phosphate cement systems for hard tissue applications: A review. ACS Biomaterials Science & Engineering, 2016, 2, 1067–1083.

    Article  Google Scholar 

  14. Klammert U, Reuther T, Blank M, Reske I, Barralet J E, Grover L M, Kübler A C, Gbureck U. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomaterialia, 2010, 6, 1529–1535.

    Article  Google Scholar 

  15. Vorndran E, Ewald A, Müller F A, Zorn K, Kufner A, Gbureck U. Formation and properties of magnesium-ammonium-phosphate hexahydrate biocements in the Ca-Mg-PO4 system. Journal of Materials Science: Materials in Medicine, 2011, 22, 429–436.

    Google Scholar 

  16. Wu F, Wei J, Guo H, Chen F P, Hong H, Liu C S. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomaterialia, 2008, 4, 1873–1884.

    Article  Google Scholar 

  17. Brückner T, Hurle K, Stengele A, Groll J, Gbureck U. Mechanical activation and cement formation of trimagnesium phosphate. Journal of the American Ceramic Society, 2018, 24, 4123–4131.

    Google Scholar 

  18. Ostrowski N, Sharma V, Roy A, Kumta P N. Systematic assessment of synthesized tri-magnesium phosphate powders (amorphous, semi-crystalline and crystalline) and cements for ceramic bone cement applications. Journal of Materials Science & Technology, 2015, 31, 437–444.

    Article  Google Scholar 

  19. Pina S, Olhero S M, Gheduzzi S, Miles A W, Ferreira J M F. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia, 2009, 5, 1233–1240.

    Article  Google Scholar 

  20. Karfarma M, Esnaashary M H, Rezaie H R, Javadpour J. Poly(propylene fumarate)/magnesium calcium phosphate injectable bone composite: Effect of filler size and its weight fraction on mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 1165–1174.

    Article  Google Scholar 

  21. Babaie E, Lin B, Bhaduri S B. A new method to produce macroporous Mg-phosphate bone growth substitutes. Materials Science and Engineering C, 2017, 75, 602–609.

    Article  Google Scholar 

  22. Moseke C, Saratsis V, Gbureck U. Injectability and mechanical properties of magnesium phosphate cements. Journal of Materials Science: Materials in Medicine, 2011, 22, 2591–2598.

    Google Scholar 

  23. Mestres G, Abdolhosseini M, Bowles W, Huang S H, Aparicio C, Gorr S U, Ginebra M P. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements. Acta Biomaterialia, 2013, 9, 8384–8393.

    Article  Google Scholar 

  24. Klammert U, Ignatius A, Wolfram U, Reuther T, Gbureck U. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomaterialia, 2011, 7, 3469–3475.

    Article  Google Scholar 

  25. Yu Y L, Wang J, Liu C S, Zhang B, Chen H H, Guo H, Zhong G, Qu W D, Jiang S H, Huang H G. Evaluation of inherent toxicology and biocompatibility of magnesium phosphate bone cement. Colloids and Surfaces B: Biointerfaces, 2010, 76, 496–504.

    Article  Google Scholar 

  26. Newman P, Minett A, Ellis-Behnke R, Zreiqat H. Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine, 2013, 9, 1139–1158.

    Article  Google Scholar 

  27. Kotchey G P, Zhao Y, Kagan V E, Star A. Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Advanced Drug Delivery Reviews, 2013, 65, 1921–1932.

    Article  Google Scholar 

  28. Poland C A, Duffin R, Kinloch I, Maynard A, Wallace W A H, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 2008, 3, 423–428.

    Article  Google Scholar 

  29. Kagan VE, Konduru N V, Feng W H, Allen B L, Conroy J, Volkov Y, Vlasova I I, Belikova N A, Yanamala N, Kapralov A, Tyurina Y Y, Shi J, Kisin E R, Murray A R, Franks J, Stolz D, Gou P P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova A A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotechnology, 2010, 5, 354–359.

    Article  Google Scholar 

  30. Bhattacharya K, El-Sayed R, Andón F T, Mukherjee S P, Gregory J, Li H, Zhao Y C, Seo W, Fornara A, Brandner B, Toprak M S, Leifer K, Star A, Fadeel B. Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant. Carbon, 2015, 91, 506–517.

    Article  Google Scholar 

  31. Chew K K, Low K L, Zein S H S, McPhail D S, Gerhardt L C, Roether J A, Boccaccini A R. Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 331–339.

    Article  Google Scholar 

  32. Wang X P, Ye J D, Wang Y J, Chen L. Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube. Journal of the American Ceramic Society, 2007, 90, 962–964.

    Article  Google Scholar 

  33. Echave M C, Burgo L S, Pedraz J L, Orive G. Gelatin as biomaterial for tissue engineering. Current Pharmaceutical Design, 2017, 23, 3567–3584.

    Article  Google Scholar 

  34. Bigi A, Panzavolta S, Rubini K. Setting mechanism of a biomimetic bone cement. Chemistry of Materials, 2004, 16, 3740–3745.

    Article  Google Scholar 

  35. Bigi A, Torricelli P, Fini M, Bracci B, Panzavolta S, Sturba L, Giardino R. A biomimetic gelatin-calcium phosphate bone cement. The International Journal of Artificial Organs, 2004, 27, 664–673.

    Article  Google Scholar 

  36. Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials, 2004, 25, 2893–2899.

    Article  Google Scholar 

  37. Orshesh Z, Hesaraki S, Khanlarkhani A. Blooming gelatin: An individual additive for enhancing nanoapatite precipitation, physical properties, and osteoblastic responses of nanostructured macroporous calcium phosphate bone cements. International Journal of Nanomedicine, 2017, 12, 745–758.

    Article  Google Scholar 

  38. Habraken W J E M, Boerman O C, Wolke J G C, Mikos A G, Jansen J A. In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres. Journal of Biomedical Materials Research Part A, 2009, 91A, 614–622.

    Article  Google Scholar 

  39. Perez RA, Del Valle S, Altankov G, Ginebra M P. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterial, 2011, 97B, 156–166.

    Article  Google Scholar 

  40. Alvarez Perez M A, Guarino V, Cirillo V, Ambrosio L. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/ gelatin nanofibers. Journal of Biomedical Materials Research Part A, 2012, 100 A, 3008–3019.

    Article  Google Scholar 

  41. Esnaashary M H, Rezaie H R, Khavandi A, Javadpour J. Solubility controlling of the precursor powders of magnesium phosphate cement by changing the powder composition. Advances in Applied Ceramics, 2017, 116, 286–292.

    Article  Google Scholar 

  42. Esnaashary M H, Rezaie H R, Khavandi A, Javadpour J. Evaluation of setting time and compressive strength of a new bone cement precursor powder containing Mg-Na-Ca. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 1017–1024.

    Article  Google Scholar 

  43. Esnaashary M H, Khavandi A, Rezaie H R, Javadpour J. Mg-P/c-SWCNT Bone Cement: The effect of filler on setting behavior, compressive strength and biocompatibility. Journal of Bionic Engineering, 2020, 17, 100–112.

    Article  Google Scholar 

  44. Lutterotti L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268, 334–340.

    Article  Google Scholar 

  45. Russell D W, Sambrook J. Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, New York, United States, 2001, A1–7.

    Google Scholar 

  46. Bullard J W, Jennings H M, Livingston R A, Nonat A, Scherer G W, Schweitzer J S, Scrivener K L, Thomas J J. Mechanisms of cement hydration. Cement and Concrete Research, 2011, 41, 1208–1223.

    Article  Google Scholar 

  47. Espanol M, Perez R A, Montufar E B, Marichal C, Sacco A, Ginebra M P. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomaterialia, 2009, 5, 2752–2762.

    Article  Google Scholar 

  48. Low K L, Tan S H, Zein S H S, Roether J A, Mouriño V, Boccaccini A R. Calcium phosphate-based composites as injectable bone substitute materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 94, 273–286.

    Google Scholar 

  49. Wagoner Johnson A J, Herschler A B. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia, 2011, 7, 16–30.

    Article  Google Scholar 

  50. Ewald A, Helmschrott K, Knebl G, Mehrban N, Grover L M, Gbureck U. Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 96, 326–332.

    Article  Google Scholar 

  51. Chen F P, Liu C S, Wei J, Chen X L. Physicochemical properties and biocompatibility of white dextrin modified injectable calcium-magnesium phosphate cement. International Journal of Applied Ceramic Technology, 2012, 9, 979–990.

    Article  Google Scholar 

  52. Motameni A, Alshemary A Z, Dalgic A D, Keskin D, Evis Z. Lanthanum doped dicalcium phosphate bone cements for potential use as filler for bone defects. Materials Today Communications, 2020, 26, 101774.

    Article  Google Scholar 

  53. Nadiv R, Vasilyev G, Shtein M, Peled A, Zussman E, Regev O. The multiple roles of a dispersant in nanocomposite systems. Composites Science and Technology, 2016, 133, 192–199.

    Article  Google Scholar 

  54. Miller M A, Race A, Gupta S, Higham P, Clarke M T, Mann K A. The role of cement viscosity on cement-bone apposition and strength. Journal of arthroplasty, 2007, 22, 109–116.

    Article  Google Scholar 

  55. Krause W R, Miller J, Ng P. The viscosity of acrylic bone cements. Journal of Biomedical Materials Research Part A, 1982, 16, 219–243.

    Article  Google Scholar 

  56. Zhou H, Agarwal A K, Goel V K, Bhaduri S B. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem. Materials Science and Engineering C: Materials for Biological Applications, 2013, 33, 4288–4294.

    Article  Google Scholar 

  57. Murphy-Ullrich J E. The de-adhesive activity of matricellular proteins: Is intermediate cell adhesion an adaptive state? Journal of Clinical Investigation, 2001, 107, 785–790.

    Article  Google Scholar 

  58. Zhang J, Ma X Y, Lin D, Shi H S, Yuan Y, Tang W, Zhou H J, Guo H, Qian J C, Liu C S. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials, 2015, 53, 251–264.

    Article  Google Scholar 

  59. Zreiqat H, Howlett C R, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research Part A, 2002, 62, 175–184.

    Article  Google Scholar 

  60. Kroustalli A A, Kourkouli S N, Deligianni D D. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes. Annals of Biomedical Engineering, 2013, 41, 2655–2665.

    Article  Google Scholar 

  61. Lee H H, Shin U S, Won J E, Kim H. Preparation of hydroxyapatite-carbon nanotube composite nanopowders. Materials Letters, 2011, 65, 208–211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Esnaashary.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esnaashary, M.H., Karfarma, M., Rezaie, H.R. et al. The Comparative Study of Gelatin/CNT-contained Mg-Ca-P Bone Cement with the Plain and CNT-reinforced Ones. J Bionic Eng 18, 623–636 (2021). https://doi.org/10.1007/s42235-021-0048-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-0048-5

Keywords

Navigation