Skip to main content
Log in

Terahertz metamaterial biosensor based on open square ring

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this paper, a terahertz metamaterial biosensor based on the resonant structure of the open square ring is designed, and its simulation and testing are carried out to reveal the absorbing performance and sensing performance of the sensor. The results show that the sensor can produce an extremely narrow absorption peak (absorption of 98.7%) at the resonant frequency of 0.635 THz and a half-wave width of 8.02 GHz. The best absorbance was obtained when the analyte thickness was 30 μm and the opening width was 10 μm. Under that condition, the absorption peak of the sensor showed an apparent redshift as the analyte’s refractive index increased from 1.0 to 1.8. Additionally, the sensor quality factor is 79.26, and the sensitivity is 91.5 GHz/refractive index unit (RIU). Furthermore, the sensor is prepared by UV lithography and tested. It is found that the sensor is highly sensitive to the object with a small refractive index difference and has good sensing performance. The above analysis shows that the terahertz metamaterial biosensor based on the open square ring structure prepared in this study has the advantages of simple structure, high-quality factor, and high refractive index sensitivity. It has potential applications in the field of label-free high-sensitivity biomedical sensing.

Graphical Abstract

Metamaterial absorber with continuous dielectric layer microcavity structure based on open array resonant ring cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang ZC, Fang JH, Zhou M et al (2022) CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol 3:1011399. https://doi.org/10.3389/fmicb.2022.1011399

    Article  Google Scholar 

  2. Miyagi T, Yamanaka Y, Harada Y et al (2021) An improved macromolecular crowding sensor CRONOS for detection of crowding changes in membrane-less organelles under stressed conditions. Biochem Biophys Res Commun 583:29–34. https://doi.org/10.1016/j.bbrc.2021.10.055

    Article  CAS  Google Scholar 

  3. Fang WH, Lv XQ, Ma ZT et al (2022) A flexible terahertz metamaterial biosensor for cancer cell growth and migration detection. Micromachines 13(4):631. https://doi.org/10.3390/mi13040631

    Article  Google Scholar 

  4. Hirata A, Yaita M (2015) Ultrafast terahertz wireless communications technologies. IEEE Trans Terahertz Sci Technol 5:1128–1132

    Google Scholar 

  5. Nagatsuma T (2011) Terahertz technologies: present and future. IEICE Electron Express 8:1127–1142. https://doi.org/10.1587/elex.8.1127

    Article  Google Scholar 

  6. Xie JY, Ye WC, Zhou LJ et al (2021) A review on terahertz technologies accelerated by silicon photonics. Nanomaterials 11:1646. https://doi.org/10.3390/nano11071646

    Article  CAS  Google Scholar 

  7. Hillger P, Grzyb J, Jain R et al (2019) Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans Terahertz Sci Technol 9:1–19. https://doi.org/10.1109/TTHZ.2018.2884852

    Article  CAS  Google Scholar 

  8. Reinhard B, Paul O, Rahm M (2013) Metamaterial-based photonic devices for terahertz technology. IEEE J Sel Top Quantum Electron 19:8500912. https://doi.org/10.1109/JSTQE.2012.2203107

    Article  CAS  Google Scholar 

  9. Sun QS, He YZ, Liu K et al (2017) Recent advances in terahertz technology for biomedical applications. Quant Imaging Med Surg 7:345–355. https://doi.org/10.21037/qims.2017.06.02

    Article  Google Scholar 

  10. Liu XH, Zhao HW, Liu GF et al (2010) Application of terahertz technology in pharmaceutical setting. Prog Chem 22:2191–2198. https://doi.org/10.1631/jzus.B1000073

    Article  CAS  Google Scholar 

  11. Redo-Sanchez A, Laman N, Schulkin B et al (2013) Review of terahertz technology readiness assessment and applications. J Infrared Millim Terahertz Waves 34:500–518. https://doi.org/10.1007/s10762-013-9998-y

    Article  Google Scholar 

  12. Yin M, Tang SF, Tong MM (2016) The application of terahertz spectroscopy to liquid petrochemicals detection: a review. Appl Spectrosc Rev 51:379–396. https://doi.org/10.1080/05704928.2016.1141291

    Article  Google Scholar 

  13. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of Ɛ and μ. Sov Phys Usp 10:509–514. https://doi.org/10.1070/PU1968V010N04ABEH003699

    Article  Google Scholar 

  14. Smith DR, Kroll N (2000) Negative refractive index in left-handed materials. Phys Rev Lett 85(14):2933–2936. https://doi.org/10.1103/PhysRevLett.85.2933

    Article  CAS  Google Scholar 

  15. Xu J, Cao JQ, Guo MH et al (2021) Metamaterial mechanical antenna for very low frequency wireless communication. Adv Compos Hybrid Mater 4:761–767. https://doi.org/10.1007/s42114-021-00278-1

    Article  Google Scholar 

  16. Mo B, Wang C (2022) Broadband and wide angle absorption of transparent conformal metamaterial. Adv Compos Hybrid Mater 5(1):383–389. https://doi.org/10.1007/s42114-021-00410-1

    Article  CAS  Google Scholar 

  17. Zhang Z, Li Z, Zhao Y et al (2022) Dielectric enhancement effect in biomorphic porous carbon-based iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater 5:3176–3189. https://doi.org/10.1007/s42114-022-00445-y

    Article  CAS  Google Scholar 

  18. Monticone F, Alu A (2014) Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin Phys B 23:047809. https://doi.org/10.1088/1674-1056/23/4/047809

    Article  CAS  Google Scholar 

  19. Gao HX, Liang YZ, Yu L et al (2021) Bifunctional plasmonic metamaterial absorber for narrowband sensing detection and broadband optical absorption. Opt Laser Technol 137:106807. https://doi.org/10.1016/j.optlastec.2020.106807

    Article  CAS  Google Scholar 

  20. He XY, Lin FT, Liu F et al (2016) Terahertz tunable graphene Fano resonance. Nanotechnology 27:485202. https://doi.org/10.1088/0957-4484/27/48/485202

    Article  CAS  Google Scholar 

  21. Jia XL, Wang XO (2018) Polarization-independent electromagnetically induced transparency-like metasurface. Opt Eng 57:017105. https://doi.org/10.1117/1.OE.57.1.017105

    Article  Google Scholar 

  22. Zargar MM, Rajput A, Saurav K et al (2020) Polarisation-insensitive dual-band transmissive rasorber designed on a single layer substrate. IET Microw Antennas Propag 14:1296–1303. https://doi.org/10.1049/iet-map.2020.0283

    Article  Google Scholar 

  23. Guo HY, Shi L, Yang M et al (2019) Highly stretchable and transparent dielectric gels for high sensitivity tactile sensors. Smart Mater Struct 28:024003. https://doi.org/10.1088/1361-665X/aafa44

    Article  CAS  Google Scholar 

  24. Hao HG, Wang DX, Wang Z et al (2020) Design of a high sensitivity microwave sensor for liquid dielectric constant measurement. Sensors 20:5598. https://doi.org/10.3390/s20195598

    Article  Google Scholar 

  25. Zhang XY, Ruan CJ, ul Haq T et al (2019) High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator. Sensors 19:787. https://doi.org/10.3390/s19040787

    Article  CAS  Google Scholar 

  26. Zhang Y, Xie XJ, Chen SQ et al (2022) Nano-patterned ionogel film for high-sensitivity and recyclable flexible pressure sensor. IEEE Sens J 22:7656–7664. https://doi.org/10.1109/JSEN.2022.3157597

    Article  CAS  Google Scholar 

  27. Dincer F, Karaaslan M, Unal E et al (2014) Multi-band metamaterial absorber: design, experiment, and physical interpretation. Appl Comput Electromagn Soc J 29:197–202

    Google Scholar 

  28. He Y, Wu QN, Yan SN (2019) Multi-band terahertz absorber at 01–1 THz frequency based on ultra-thin metamaterial. Plasmonics 14:1303–1310. https://doi.org/10.1007/s11468-019-00936-7

    Article  CAS  Google Scholar 

  29. Liu JJ, Fan LL, Ku JF (2016) Absorber: a novel terahertz sensor in the application of substance identification. Opt Quantum Electron 48:8. https://doi.org/10.1007/s11082-015-0361-5

    Article  CAS  Google Scholar 

  30. Driscoll T, Andreev GO, Basov DN (2007) Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl Phys Lett 91:3. https://doi.org/10.1063/1.2768300

    Article  CAS  Google Scholar 

  31. Cheng H, Lu Z, Gao Q et al (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340. https://doi.org/10.30919/es8d518

    Article  CAS  Google Scholar 

  32. Najar H, Yang C, Heidari A et al (2015) Quality factor in polycrystalline diamond micromechanical flexural resonators. J Microelectromech Syst 24:2152–2160. https://doi.org/10.1109/JMEMS.2015.2478802

    Article  CAS  Google Scholar 

  33. Guo Y, Liu H, Wang DD et al (2022) Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res 15(8):6841–6850. https://doi.org/10.1007/s12274-022-4533-x

    Article  CAS  Google Scholar 

  34. Gijare M, Chaudhari S, Ekar S et al (2021) Reduced graphene oxide based electrochemical nonenzymatic human serum glucose sensor. ES Mater Manuf 14:110–119. https://doi.org/10.30919/esmm5f486

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/32), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Wenjing Guo and Liang Zhai wrote the main manuscript text. Zeinhom M. El-Bahy, Zhumao Lu, and Lu Li did most of the characterization. Ashraf Y. Elnaggar, Mohamed M. Ibrahim, and Huiliang Cao collated data and references. Jing Linh and Bin Wang organized the documentation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Wenjing Guo, Huiliang Cao or Jing Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 809 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Zhai, L., El-Bahy, Z.M. et al. Terahertz metamaterial biosensor based on open square ring. Adv Compos Hybrid Mater 6, 92 (2023). https://doi.org/10.1007/s42114-023-00666-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00666-9

Keywords

Navigation