Skip to main content

Advertisement

Log in

Enhanced sensing performance of polyvinylidene fluoride nanofibers containing preferred oriented carbon nanotubes

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The crystal structure of polyvinylidene fluoride (PVDF) polymer could be tailored for preparing a high-performance piezoelectric sensor. Herein, the preferential orientation of the carbon nanotubes (CNTs) along the longitudinal axis of the PVDF nanofibers was achieved by adjusting the electrospinning conditions, even in the highly concentrated samples, leading to the β-phase content of more than 90%. Increasing the weight percentage of the well-oriented CNTs from 0 to 1.25, the α- to β-phase transformation entirely occurred and the output voltage increased ~ 70% from 4 to 6.8 V, respectively. At higher CNT content, the sensing performance rapidly decreased because of the sudden increase in dielectric constant and dielectric loss diagrams. The formation of the proper interfacial interactions between the uniaxially oriented CNTs and the PVDF chains, which made a perfect coaxial structure, causes an ~ 12% increase in crystallinity, ~ 100% increase in elastic modulus, and ~ 100% increase in dielectric constant. The piezoelectric sensor also showed excellent stability under a long period of 1800 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Han G, Su Y-F, Ma S, Tommy N, Lu N (2021) In situ rheological properties monitoring of cementitious materials through the piezoelectric-based electromechanical impedance (EMI) approach. Eng Sci 16:259–268. https://doi.org/10.30919/es8d537

  2. Pu J, Yan X, Jiang Y, Chang C, Lin L (2010) Piezoelectric actuation of direct-write electrospun fibers. Sensors Actuators A Phys 164:131–136. https://doi.org/10.1016/j.sna.2010.09.019

    Article  CAS  Google Scholar 

  3. Fan FR, Tang W, Wang ZL (2016) Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 28:4283–4305. https://doi.org/10.1002/adma.201504299

    Article  CAS  Google Scholar 

  4. Moghadam BH, Hasanzadeh M, Simchi A (2020) Self-powered wearable piezoelectric sensors based on polymer nanofiber–metal–organic framework nanoparticle composites for arterial pulse monitoring. ACS Appl Nano Mater 3:8742–8752. https://doi.org/10.1021/acsanm.0c01551

    Article  CAS  Google Scholar 

  5. Su Y-F, Kotian RR, Lu N (2018) Energy harvesting potential of bendable concrete using polymer based piezoelectric generator. Compos Part B Eng 153:124–129. https://doi.org/10.1016/j.compositesb.2018.07.018

    Article  CAS  Google Scholar 

  6. Wang X, Sun F, Yin G, Wang Y, Liu B, Dong M (2018) Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review. Sensors 18:330–346. https://doi.org/10.3390/s18020330

    Article  CAS  Google Scholar 

  7. Wu H, Cao Y, Ishige R, Higaki Y, Hoshino T, Ohta N, Takahara A (2013) Confinement-induced crystal growth in one-dimensional isotactic polystyrene nanorod arrays. ACS Macro Lett 2:414–418. https://doi.org/10.1021/mz400136d

    Article  CAS  Google Scholar 

  8. Ramasundaram S, Rahaman A, Kim B (2019) Direct preparation of β-crystalline poly(vinylidene fluoride) nanofibers by electrospinning and the use of non-polar silver nanoparticles coated poly(vinylidene fluoride) nanofibers as electrodes for piezoelectric sensor. Polymer 183:121910–121924. https://doi.org/10.1016/j.polymer.2019.121910

    Article  CAS  Google Scholar 

  9. Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater 8:274–287. https://doi.org/10.1080/1539445x.2010.495630

    Article  CAS  Google Scholar 

  10. Shehata N, Elnabawy E, Abdelkader M, H. Hassanin A, Salah M, Nair R, Ahmad Bhat S (2018) Static-aligned piezoelectric poly (vinylidene fluoride) electrospun nanofibers/MWCNT composite membrane: facile method. Polymers 10:965–976. https://doi.org/10.3390/polym10090965

    Article  CAS  Google Scholar 

  11. Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633–1643. https://doi.org/10.1038/ncomms2639www.nature.com/naturecommunications

  12. Sharafkhani S, Kokabi M (2020) Ultrathin-shell PVDF/CNT nanocomposite aligned hollow fibers as a sensor/actuator single element. Compos Sci Technol 200:108425–108435. https://doi.org/10.1016/j.compscitech.2020.108425

    Article  CAS  Google Scholar 

  13. Liu ZH, Pan CT, Lin LW, Huang JC, Ou ZY (2014) Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater Struct 23:25003–25014. http://iopscience.iop.org/0964-1726/23/2/025003

  14. Hosseini SM, Yousefi AA (2017) Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites. Org Electron 50:121–129. https://doi.org/10.1016/j.orgel.2017.07.035

    Article  CAS  Google Scholar 

  15. Liu X, Ma J, Wu X, Lin L, Wang X (2017) Polymeric nanofibers with ultrahigh piezoelectricity via self-orientation of nanocrystals. ACS Nano 11:1901–1910. https://doi.org/10.1021/acsnano.6b07961

    Article  CAS  Google Scholar 

  16. Guo Y, Liu H, Wang D, El-Bahy ZM, Althakafy JT, Abo-Dief HM, Guo Z, Bin XuB, Liu C, Shen C (2022) Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res 15:6841–6850. https://doi.org/10.1007/s12274-022-4533-x

    Article  CAS  Google Scholar 

  17. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Bin XuB, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118–137. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  18. Wu N, Zhao B, Chen X, Hou C, Huang M, Alhadhrami A, Mersal GAM, Ibrahim MM, Tian J (2022) Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv Compos Hybrid Mater 5:1548–1556. https://doi.org/10.1007/s42114-022-00490-7

    Article  CAS  Google Scholar 

  19. Tang R, Xu P, Dong J, Gui H, Zhang T, Ding Y, Murugadoss V, Naik N, Pan D, Huang M, Guo Z (2022) Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon N Y 188:492–502. https://doi.org/10.1016/j.carbon.2021.12.026

    Article  CAS  Google Scholar 

  20. He L (2021) Improve thermal conductivity of polymer composites via conductive network. ES Mater Manuf 13:1–2. https://doi.org/10.30919/esmm5f460

  21. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf 13:53–65. https://doi.org/10.30919/esmm5f450

  22. Chen J, Zhu Y, Guo Z, Nasibulin AG (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci 12:13–22. https://doi.org/10.30919/es8d1129

  23. Li G, Wang L, Lei X, Peng Z, Wan T, Maganti S, Huang M, Murugadoss V, Seok I, Jiang Q, Cui D, Alhadhrami A, Ibrahim MM, Wei H (2022) Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5:853–863. https://doi.org/10.1007/s42114-022-00501-7

    Article  CAS  Google Scholar 

  24. Rehman S ur, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Amir M, Wang J (2021) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78. https://doi.org/10.30919/es8d1263

  25. Sun D, Yan J, Ma X, Lan M, Wang Z, Cui S, Yang J (2021) Tribological investigation of self-healing composites containing metal/polymer microcapsules. ES Mater Manuf 14:59–72. https://doi.org/10.30919/esmm5f469

  26. Su Y-F, Han G, Kong Z, Nantung T, Lu N (2020) Embeddable piezoelectric sensors for strength gain monitoring of cementitious materials: the influence of coating materials. Eng Sci 11:66–75. https://doi.org/10.30919/es8d1114

  27. Liu Z, Zeng M, Wang H, Wang X, Yan L, Zeng C Toward flexible piezoelectrets with high environmental stability: a hybrid approach. ES Mater Manuf 17:73–82. https://doi.org/10.30919/esmm5f631

  28. Wang H, Li Y, Wang X, Liu Z, Ahmed MF, Zeng C (2021) Preparation and characterization of piezoelectric foams based on cyclic olefin copolymer. Eng Sci 16:203–210. https://doi.org/10.30919/es8d560

  29. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397. https://doi.org/10.1021/cr100018g

    Article  CAS  Google Scholar 

  30. Lee H, Watanabe K, Kim M, Gopiraman M, Song K-H, Lee JS, Kim IS (2016) Handspinning enabled highly concentrated carbon nanotubes with controlled orientation in nanofibers. Sci Rep 6:37590–37598. https://doi.org/10.1038/srep37590

    Article  CAS  Google Scholar 

  31. Sharafkhani S, Kokabi M (2021) High performance flexible actuator: PVDF nanofibers incorporated with axially aligned carbon nanotubes. Compos Part B Eng 222:109060–109068. https://doi.org/10.1016/j.compositesb.2021.109060

    Article  CAS  Google Scholar 

  32. Zheng Z, Yang A, Tao J, Li J, Zhang W, Li X, Xue H (2022) Mechanical and conductive properties of Cu matrix composites reinforced by oriented carbon nanotubes with different coatings. Nanomaterials 12:266–292. https://doi.org/10.3390/nano12020266

    Article  CAS  Google Scholar 

  33. Kyoungjin An A, Lee E-J, Guo J, Jeong S, Lee J-G, Ghaffour N (2017) Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Sci Rep 7:41562–41573. https://doi.org/10.1038/srep41562

    Article  CAS  Google Scholar 

  34. He Z, Rault F, Lewandowski M, Mohsenzadeh E, Salaün F (2021) Electrospun PVDF nanofibers for piezoelectric applications: a review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers 13:174–197. https://doi.org/10.3390/polym13020174

    Article  CAS  Google Scholar 

  35. Ahn Y, Lim JY, Hong SM, Lee J, Ha J, Choi HJ, Seo Y (2013) Enhanced piezoelectric properties of electrospun poly (vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly (vinylidene fluoride). J Phys Chem C 117:11791–11799. https://doi.org/10.1021/jp4011026

    Article  CAS  Google Scholar 

  36. Liu X, Xu S, Kuang X, Wang X (2016) Ultra-long MWCNTs highly oriented in electrospun PVDF/MWCNT composite nanofibers with enhanced β phase. RSC Adv 6:106690–106696. https://doi.org/10.1039/C6RA24195F

    Article  CAS  Google Scholar 

  37. Abolhasani MM, Rezaei Abadchi M, Magniez K, Guo Q (2015) Different thermal analysis technique application in determination of fold surface-free energy. J Therm Anal Calorim 119:527–536. https://doi.org/10.1007/s10973-014-4121-8

    Article  CAS  Google Scholar 

  38. Liu ZH, Pan CT, Lin LW, Lai HW (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A Phys 193:13–24. https://doi.org/10.1016/j.sna.2013.01.007

    Article  CAS  Google Scholar 

  39. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846. https://doi.org/10.1063/1.1408260

    Article  CAS  Google Scholar 

  40. Ke K, Pötschke P, Jehnichen D, Fischer D, Voit B (2014) Achieving β-phase poly (vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes. Polymer 55:611–619. https://doi.org/10.1016/j.polymer.2013.12.014

    Article  CAS  Google Scholar 

  41. Issa AA, Al-Maadeed MA, Luyt AS, Ponnamma D, Hassan MK (2017) Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles. C 3:3040030–3040046. https://doi.org/10.3390/c3040030

  42. Hosseini H, Kokabi M, Mousavi SM (2019) Conductive network formation in bacterial cellulose-based nanocomposite aerogels. Compos Part B Eng 174:106981–106989. https://doi.org/10.1016/j.compositesb.2019.106981

    Article  CAS  Google Scholar 

  43. Wang P, Song T, Abo-Dief HM, Song J, Alanazi AK, Fan B, Huang M, Lin Z, Altalhi AA, Gao S, Yang L, Liu J, Feng S, Cao T (2022) Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites. Adv Compos Hybrid Mater 5:1100–1110. https://doi.org/10.1007/s42114-022-00489-0

    Article  CAS  Google Scholar 

  44. Sharafkhani S, Kokabi M (2022) Modeling the dielectric behavior of polymer nanocomposites considering interphase properties and nanoparticle geometry. Polym Bull. https://doi.org/10.1007/s00289-022-04364-2

    Article  Google Scholar 

  45. Yuan J-K, Li W-L, Yao S-H, Lin Y-Q, Sylvestre A, Bai J (2011) High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Appl Phys Lett 98:32901–32904. https://doi.org/10.1063/1.3544942

    Article  CAS  Google Scholar 

  46. Silakaew K, Thongbai P (2019) Significantly improved dielectric properties of multiwall carbon nanotube-BaTiO3/PVDF polymer composites by tuning the particle size of the ceramic filler. RSC Adv 9:23498–23507. https://doi.org/10.1039/C9RA04933A

    Article  CAS  Google Scholar 

  47. Francis E, Ko HU, Kim JW, Kim HC, Kalarikkal N, Varughese K, Kim J, Thomas S (2018) High-k dielectric percolative nanocomposites based on multiwalled carbon nanotubes and polyvinyl chloride. J Mater Chem C 6:8152–8159. https://doi.org/10.1039/C8TC02528B

    Article  CAS  Google Scholar 

  48. Li K, Hou D, Fu C, Wang K, Wang J (2019) Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination. J Environ Sci 75:277–288. https://doi.org/10.1016/j.jes.2018.04.002

    Article  CAS  Google Scholar 

  49. Baji A, Mai Y-W, Abtahi M, Wong S-C, Liu Y, Li Q (2013) Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Compos Sci Technol 88:1–8. https://doi.org/10.1016/j.compscitech.2013.08.021

    Article  CAS  Google Scholar 

  50. Bower AF (2009) Applied mechanics of solids. CRC Press, USA

    Book  Google Scholar 

  51. Garcia C, Trendafilova I, Sanchez del Rio J (2019) Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor. Nano Energy 56:443–453. https://doi.org/10.1016/j.nanoen.2018.11.055

    Article  CAS  Google Scholar 

  52. Arnau A, Soares D (2009) Fundamentals of piezoelectricity. In: Vives A.A (ed.) Piezoelectric transducers and applications. Springer-Verlag, Berlin Heidelberg, pp 1–38. https://doi.org/10.1007/978-3-540-77508-9_1

  53. Sun Y, Chen J, Li X, Lu Y, Zhang S, Cheng Z (2019) Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range. Nano Energy 61:337–345. https://doi.org/10.1016/j.nanoen.2019.04.055

    Article  CAS  Google Scholar 

  54. Kim HJ, Kim YJ (2018) High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic-epoxy nanocomposites. Mater Des 151:133–140. https://doi.org/10.1016/j.matdes.2018.04.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tarbiat Modares University and the Iran Nanotechnology Initiative Council (INIC) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Kokabi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1562 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafkhani, S., Kokabi, M. Enhanced sensing performance of polyvinylidene fluoride nanofibers containing preferred oriented carbon nanotubes. Adv Compos Hybrid Mater 5, 3081–3093 (2022). https://doi.org/10.1007/s42114-022-00565-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00565-5

Keywords