Skip to main content
Log in

Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Wearable piezoresitive sensors have exhibited promising potentials for applications in motion detection and human-computer interactions. Herein, we reported a facile sol-gel followed by hydrothermal reduction approach to prepare polypyrrole/reduced graphite oxide aerogel (PPy@rGA) film, which is more oriented to flexible wearable piezoresistive sensors as compared with traditional cylindrical reduced graphene oxide (rGO) aerogel. The strong π-π interactions between rGO and PPy enhance the interfacial strength and help to maintain the integrity of the composite aerogel film. Meanwhile, the PPy nanoparticles anchoring on the edges and defects of rGO sheets create more electrically conductive paths when an external pressure is applied, and therefore give rise to significant changes in the resistance value and thus excellent piezoresistive sensing performance. The PPy2@rGA film (pyrrole monomer: graphene oxide is 2:1 wt%)–based piezoresistive sensor exhibits a high sensitivity of 0.9 kPa−1 in a linear range that is of 0 to 1 kPa, a short response time of 165 ms, and a short relaxation time of 132 ms, and is able to withstand 10,000 cycles. Moreover, the wearable sensor is capable of detecting large as well as small human motion. This study shows the feasibility of fabricating wearable piezoresitive sensors from rGO aerogel films reinforced by intrinsically conductive polymers.

Graphical abstract

In this polypyrrole/reduced graphite oxide aerogel film which is more oriented to flexible wearable piezoresistive sensors, PPy nanoparticles anchor adjacent rGO sheets via strong π-π interfacial forces and meanwhile serve as nano-spacers that contribute to an enhanced piezoresistive sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jing X, Li H, Mi H-Y, Liu Y-J, Feng P-Y, Tan Y-M, Turng L-S (2019) Highly transparent, stretchable, and rapid self-healing polyvinyl alcohol/cellulose nanofibril hydrogel sensors for sensitive pressure sensing and human motion detection. Sensor Actuat B-Chem 295:159–167. https://doi.org/10.1016/j.snb.2019.05.082

    Article  CAS  Google Scholar 

  2. Li X-P, Li Y, Li X, Song D, Min P, Hu C, Zhang H-B, Koratkar N, Yu Z-Z (2019) Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J Colloid Interface Sci 542:54–62. https://doi.org/10.1016/j.jcis.2019.01.123

    Article  CAS  Google Scholar 

  3. Tian G, Deng W, Gao Y, Xiong D, Yan C, He X, Yang T, Jin L, Chu X, Zhang H, Yan W, Yang W (2019) Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 59:574–581. https://doi.org/10.1016/j.nanoen.2019.03.013

    Article  CAS  Google Scholar 

  4. Deng W, Yang T, Jin L, Yan C, Huang H, Chu X, Wang Z, Xiong D, Tian G, Gao Y, Zhang H, Yang W (2019) Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 55:516–525. https://doi.org/10.1016/j.nanoen.2018.10.049

    Article  CAS  Google Scholar 

  5. Chu J, Cai J (2020) Flexible pressure sensors with a highly pressure- and strain-sensitive layer based on nitroxyl radical-grafted hollow carbon spheres. Nanoscale 12(17):9375–9384. https://doi.org/10.1039/d0nr01192d

    Article  CAS  Google Scholar 

  6. Park H, Kim JW, Hong SY, Lee G, Kim DS, Oh Jh, Jin SW, Jeong YR, Oh SY, Yun JY, Ha JS (2018) Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv Funct Mater 28 (33). https://doi.org/10.1002/adfm.201707013

  7. Chhetry A, Sharma S, Yoon H, Ko S, Park JY (2020) Enhanced sensitivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications. Adv Funct Mater :1910020. https://doi.org/10.1002/adfm.201910020

  8. Zhao W, Shi Z, Hu S, Yang G, Tian H (2018) Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics. Adv Compos Hybrid Mater 1(2):320–331. https://doi.org/10.1007/s42114-018-0036-3

    Article  CAS  Google Scholar 

  9. Su Y-F, Han G, Kong Z, Nantung T, Lu N (2020) Embeddable piezoelectric sensors for strength gain monitoring of cementitious materials: the influence of coating materials. Engnieered Sci 11:66–75. https://doi.org/10.30919/es8d1114

    Article  CAS  Google Scholar 

  10. Lou M, Abdalla I, Zhu M, Wei X, Yu J, Li Z, Ding B (2020) Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl Mater Interfaces 12(17):19965–19973. https://doi.org/10.1021/acsami.0c03670

    Article  CAS  Google Scholar 

  11. Li Y, Wang W, Liao K, Hu C, Huang Z, Feng Q (2003) Piezoresistive effect in carbon nanotube films. Chin Sci Bull 48(2):125–127. https://doi.org/10.1360/03tb9024

    Article  CAS  Google Scholar 

  12. Lu Y, Tian M, Sun X, Pan N, Chen F, Zhu S, Zhang X, Chen S (2019) Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos Part A-Appl S 117:202–210. https://doi.org/10.1016/j.compositesa.2018.11.023

    Article  CAS  Google Scholar 

  13. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63. https://doi.org/10.1038/nature05545

    Article  CAS  Google Scholar 

  14. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  15. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  16. Zhou K, Chen C, Lei M, Gao Q, Nie S, Liu X, Wang S (2020) Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism. RSC Adv 10(4):2150–2159. https://doi.org/10.1039/c9ra08653f

    Article  CAS  Google Scholar 

  17. Wu J, Li H, Lai X, Chen Z, Zeng X (2020) Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem Eng J 386 https://doi.org/10.1016/j.cej.2019.123998

  18. Iurchenkova AA, Fedorovskaya EO, Asanov IP, Arkhipov VE, Popov KM, Baskakova KI, Okotrub AV (2020) MWCNT buckypaper/polypyrrole nanocomposites for supercapasitor application. Electrochim Acta 335 https://doi.org/10.1016/j.electacta.2020.135700

  19. Li H, Yin  J, Meng Y, Liu S, Jiao T (2020) Nickel/Cobalt-containing polypyrrole hydrogel-derived approach for efficient ORR electrocatalyst. Colloid Surface A 586 https://doi.org/10.1016/j.colsurfa.2019.124221

  20. Fan Y, Bai W, Mu P, Su Y, Zhu Z, Sun H, Liang W, Li A (2020) Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam generators. Sol Energ Mat Sol C 206 https://doi.org/10.1016/j.solmat.2019.110347

  21. Zhao P, Zhang R, Tong Y, Zhao X, Tang Q, Liu Y (2020) All‐Paper, All‐organic, cuttable, and foldable pressure sensor with tuneable conductivity polypyrrole. Adv Electron Mater 6(8). https://doi.org/10.1002/aelm.201901426

  22. Chen J, Zhu Y, Guo Z, Nasibulin AG (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Engnieered Sci. https://doi.org/10.30919/es8d1129

    Article  Google Scholar 

  23. Huang H, Han L, Wang Y, Yang Z, Zhu F, Xu M (2019) Tunable thermal-response shape memory bio-polymer hydrogels as body motion sensors. Engnieered Sci 9:60–67. https://doi.org/10.30919/es8d812

    Article  CAS  Google Scholar 

  24. Xue J, Chen J, Song J, Xu L, Zeng H (2017) Wearable and visual pressure sensors based on Zn2GeO4@polypyrrole nanowire aerogels. J Mater Chem C 5(42):11018–11024. https://doi.org/10.1039/c7tc04147k

    Article  CAS  Google Scholar 

  25. Huang J, Li D, Zhao M, Ke H, Mensah A, Lv P, Tian X, Wei Q (2019) Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem Eng J 373:1357–1366. https://doi.org/10.1016/j.cej.2019.05.136

    Article  CAS  Google Scholar 

  26. Wan Y, Qin N, Wang Y, Zhao Q, Wang Q, Yuan P, Wen Q, Wei H, Zhang X, Ma N (2020) Sugar-templated conductive polyurethane-polypyrrole sponges for wide-range force sensing. Chem Eng J 383 https://doi.org/10.1016/j.cej.2019.123103

  27. Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80(6):1339. https://doi.org/10.1021/ja01539a017

  28. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132(23):8180–8186. https://doi.org/10.1021/ja102777p

    Article  CAS  Google Scholar 

  29. Guyard L, Hapiot P, Neta P (1997) Redox chemistry of bipyrroles: further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles. J Phys Chem B 101(29):5698–5706. https://doi.org/10.1021/jp9706083

    Article  CAS  Google Scholar 

  30. Bai H, Sheng K, Zhang P, Li C, Shi G (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21(46):18653–18658. https://doi.org/10.1039/C1JM13918E

    Article  CAS  Google Scholar 

  31. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73. https://doi.org/10.1038/ncomms1067

    Article  CAS  Google Scholar 

  32. Chen C, Yang Q-H, Yang Y, Lv W, Wen Y, Hou P-X, Wang M, Cheng H-M (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21(29):3007–3011. https://doi.org/10.1002/adma.200803726

    Article  CAS  Google Scholar 

  33. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877. https://doi.org/10.1021/ja803688x

    Article  CAS  Google Scholar 

  34. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  Google Scholar 

  35. Sahoo S, Karthikeyan G, Nayak GC, Das CK (2011) Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth Met 161(15):1713–1719. https://doi.org/10.1016/j.synthmet.2011.06.011

    Article  CAS  Google Scholar 

  36. Zhong J, Gao S, Xue G, Wang B (2015) Study on enhancement mechanism of conductivity induced by graphene oxide for polypyrrole nanocomposites. Macromolecules 48(5):1592–1597. https://doi.org/10.1021/ma502449k

    Article  CAS  Google Scholar 

  37. Amarnath CA, Hong CE, Kim NH, Ku B-C, Kuila T, Lee JH (2011) Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 49(11):3497–3502. https://doi.org/10.1016/j.carbon.2011.04.048

    Article  CAS  Google Scholar 

  38. Jin Z, Yao J, Kittrell C, Tour JM (2011) Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5(5):4112–4117. https://doi.org/10.1021/nn200766e

    Article  CAS  Google Scholar 

  39. Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23(47):5679–5683. https://doi.org/10.1002/adma.201102838

    Article  CAS  Google Scholar 

  40. Wan Y, Wang Y, Guo CF (2017) Recent progresses on flexible tactile sensors. Mater Today Phys 1:61–73. https://doi.org/10.1016/j.mtphys.2017.06.002

    Article  Google Scholar 

  41. Yang T, Xie D, Li Z, Zhu H (2017) Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater Sci Eng R-Reports 115:1–37. https://doi.org/10.1016/j.mser.2017.02.001

    Article  Google Scholar 

  42. Yoon JI, Choi KS, Chang SP (2017) A novel means of fabricating microporous structures for the dielectric layers of capacitive pressure sensor. Microelectron Eng 179:60–66. https://doi.org/10.1016/j.mee.2017.04.028

    Article  CAS  Google Scholar 

  43. Chen S, Zhuo B, Guo X (2016) Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range. ACS Appl Mater Interfaces 8(31):20364–20370. https://doi.org/10.1021/acsami.6b05177

    Article  CAS  Google Scholar 

  44. Kim K-H, Hong SK, Jang N-S, Ha S-H, Lee HW, Kim J-M (2017) Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology. ACS Appl Mater Interfaces 9(20):17499–17507. https://doi.org/10.1021/acsami.7b06119

    Article  CAS  Google Scholar 

  45. Lan L, Zhao F, Yao Y, Ping J, Ying Y (2020) One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor. ACS Appl Mater Interfaces 12(9):10689–10696. https://doi.org/10.1021/acsami.0c00079

    Article  CAS  Google Scholar 

  46. Chen J, Zhu Y, Jiang W (2020) A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos Sci Technol 186 https://doi.org/10.1016/j.compscitech.2019.107938

  47. Haniff MASM, Hafiz SM, Huang NM, Rahman SA, Wahid KAA, Syono MI, Azid IA (2017) Piezoresistive effect in plasma-doping of graphene sheet for high-performance flexible pressure sensing application. ACS Appl Mater Interfaces 9(17):15192–15201. https://doi.org/10.1021/acsami.7b02833

    Article  CAS  Google Scholar 

  48. Lee K, Lee J, Kim G, Kim Y, Kang S, Cho S, Kim S, Kim J-K, Lee W, Kim D-E, Kang S, Kim D, Lee T, Shim W (2017) Rough-surface-enabled capacitive pressure sensors with 3D touch capability. Small:1700368. https://doi.org/10.1002/smll.201700368

  49. Li X, Huang W, Yao G, Gao M, Wei X, Liu Z, Zhang H, Gong T, Yu B (2017) Highly sensitive flexible tactile sensors based on microstructured multiwall carbon nanotube arrays. Scr Mater 129:61–64. https://doi.org/10.1016/j.scriptamat.2016.10.037

    Article  CAS  Google Scholar 

  50. Wang L, Jackman JA, Tan E-L, Park JH, Potroz MG, Hwang ET, Cho N-J (2017) High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 36:38–45. https://doi.org/10.1016/j.nanoen.2017.04.015

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by National Natural Science, Foundation of China (51703162). Dr. Huige Wei also received support from Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huige Wei, Dapeng Cui, Binbin Dong or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.04 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Li, A., Kong, D. et al. Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4, 86–95 (2021). https://doi.org/10.1007/s42114-020-00201-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00201-0

Keywords

Navigation